ಮೌಲ್ಯಮಾಪನ
\frac{1}{2n^{2}}
ವ್ಯತ್ಯಾಸ w.r.t. n
-\frac{1}{n^{3}}
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
\left(15n^{1}\right)^{1}\times \frac{1}{30n^{3}}
ಅಭಿವ್ಯಕ್ತಿಯನ್ನು ಸರಳೀಕೃತಗೊಳಿಸಲು ಘಾತಾಂಕಗಳ ನಿಯಮಗಳನ್ನು ಬಳಿಸಿ.
15^{1}\left(n^{1}\right)^{1}\times \frac{1}{30}\times \frac{1}{n^{3}}
ಘಾತಕ್ಕೆ ಎರಡು ಅಥವಾ ಅದಕ್ಕಿಂತ ಹೆಚ್ಚಿನ ಸಂಖ್ಯೆಗಳ ಉತ್ಪನ್ನವನ್ನು ಹೆಚ್ಚಿಸಲು, ಘಾತಕ್ಕೆ ಪ್ರತಿ ಸಂಖ್ಯೆಯನ್ನು ಹೆಚ್ಚಿಸಿ ಹಾಗೂ ಅದರ ಉತ್ಪನ್ನವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
15^{1}\times \frac{1}{30}\left(n^{1}\right)^{1}\times \frac{1}{n^{3}}
ಗುಣಾಕಾರ ಪರಿವರ್ತನೀಯ ಗುಣ ಬಳಸಿ.
15^{1}\times \frac{1}{30}n^{1}n^{3\left(-1\right)}
ಸಂಖ್ಯೆಯ ಘಾತವನ್ನು ಮತ್ತೊಂದು ಘಾತಕ್ಕೆ ಹೆಚ್ಚಿಸಲು, ಘಾತಾಂಕಗಳನ್ನು ಗುಣಿಸಿ.
15^{1}\times \frac{1}{30}n^{1}n^{-3}
-1 ಅನ್ನು 3 ಬಾರಿ ಗುಣಿಸಿ.
15^{1}\times \frac{1}{30}n^{1-3}
ಒಂದೇ ಆಧಾರ ಸಂಖ್ಯೆಯ ಘಾತಗಳನ್ನು ಗುಣಿಸಲು ಅದರ ಘಾತಾಂಕಗಳನ್ನು ಸೇರಿಸಿ.
15^{1}\times \frac{1}{30}n^{-2}
1 ಮತ್ತು -3 ಘಾತಾಂಕಗಳನ್ನು ಸೇರಿಸಿ.
15\times \frac{1}{30}n^{-2}
1 ಘಾತಕ್ಕೆ 15 ಹೆಚ್ಚಿಸಿ.
\frac{1}{2}n^{-2}
\frac{1}{30} ಅನ್ನು 15 ಬಾರಿ ಗುಣಿಸಿ.
\frac{15^{1}n^{1}}{30^{1}n^{3}}
ಅಭಿವ್ಯಕ್ತಿಯನ್ನು ಸರಳೀಕೃತಗೊಳಿಸಲು ಘಾತಾಂಕಗಳ ನಿಯಮಗಳನ್ನು ಬಳಿಸಿ.
\frac{15^{1}n^{1-3}}{30^{1}}
ಒಂದೇ ಆಧಾರ ಸಂಖ್ಯೆಯ ಘಾತಗಳನ್ನು ಭಾಗಿಸಲು, ಸಂಖ್ಯಾಕಾರದ ಘಾತದಿಂದ ಛೇದದ ಘಾತವನ್ನು ಕಳೆಯಿರಿ.
\frac{15^{1}n^{-2}}{30^{1}}
1 ದಿಂದ 3 ಕಳೆಯಿರಿ.
\frac{1}{2}n^{-2}
15 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{15}{30} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{15}{30}n^{1-3})
ಒಂದೇ ಆಧಾರ ಸಂಖ್ಯೆಯ ಘಾತಗಳನ್ನು ಭಾಗಿಸಲು, ಸಂಖ್ಯಾಕಾರದ ಘಾತದಿಂದ ಛೇದದ ಘಾತವನ್ನು ಕಳೆಯಿರಿ.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{1}{2}n^{-2})
ಅಂಕಗಣಿತ ಮಾಡಿ.
-2\times \frac{1}{2}n^{-2-1}
ಬಹುಪದೀಯದ ವ್ಯುತ್ಪತ್ತಿಯು ಅದರ ಪದಗಳ ವ್ಯುತ್ಪತ್ತಿಗಳ ಮೊತ್ತವಾಗಿದೆ. ಯಾವುದೇ ಸ್ಥಿರ ಪದದ ವ್ಯುತ್ಪತ್ತಿಯು 0 ಆಗಿದೆ. ax^{n} ನ ವ್ಯುತ್ಪತ್ತಿಯು nax^{n-1} ಆಗಿದೆ.
-n^{-3}
ಅಂಕಗಣಿತ ಮಾಡಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}