ಮೌಲ್ಯಮಾಪನ
\frac{43}{60}\approx 0.716666667
ಅಪವರ್ತನ
\frac{43}{2 ^ {2} \cdot 3 \cdot 5} = 0.7166666666666667
ರಸಪ್ರಶ್ನೆ
Arithmetic
5 ಇದೇ ತರಹದ ಪ್ರಶ್ನೆಗಳು:
\frac { 11 } { 20 } + \frac { 7 } { 15 } - \frac { 9 } { 30 } =
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
\frac{33}{60}+\frac{28}{60}-\frac{9}{30}
20 ಮತ್ತು 15 ಇವುಗಳ ಕನಿಷ್ಠ ಅಪವರ್ತ್ಯವು 60 ಆಗಿದೆ. 60 ಛೇದದ ಮೂಲಕ \frac{11}{20} ಮತ್ತು \frac{7}{15} ಅನ್ನು ಭಿನ್ನಾಂಕಗಳಿಗೆ ಪರಿವರ್ತಿಸಿ.
\frac{33+28}{60}-\frac{9}{30}
\frac{33}{60} ಮತ್ತು \frac{28}{60} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಸೇರಿಸಿ.
\frac{61}{60}-\frac{9}{30}
61 ಪಡೆದುಕೊಳ್ಳಲು 33 ಮತ್ತು 28 ಸೇರಿಸಿ.
\frac{61}{60}-\frac{3}{10}
3 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{9}{30} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
\frac{61}{60}-\frac{18}{60}
60 ಮತ್ತು 10 ಇವುಗಳ ಕನಿಷ್ಠ ಅಪವರ್ತ್ಯವು 60 ಆಗಿದೆ. 60 ಛೇದದ ಮೂಲಕ \frac{61}{60} ಮತ್ತು \frac{3}{10} ಅನ್ನು ಭಿನ್ನಾಂಕಗಳಿಗೆ ಪರಿವರ್ತಿಸಿ.
\frac{61-18}{60}
\frac{61}{60} ಮತ್ತು \frac{18}{60} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಕಳೆಯಿರಿ.
\frac{43}{60}
43 ಪಡೆದುಕೊಳ್ಳಲು 61 ದಿಂದ 18 ಕಳೆಯಿರಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}