ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

10+\left(x-5\right)x=\left(x+1\right)\times 3
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ ಯಾವುದೇ -1,5 ಮೌಲ್ಯಗಳಿಗೆ ಸಮನಾಗಿರಬಾರದು. ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು \left(x-5\right)\left(x+1\right), \left(x-5\right)\left(x+1\right),x+1,x-5 ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
10+x^{2}-5x=\left(x+1\right)\times 3
x ದಿಂದ x-5 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
10+x^{2}-5x=3x+3
3 ದಿಂದ x+1 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
10+x^{2}-5x-3x=3
ಎರಡೂ ಕಡೆಗಳಿಂದ 3x ಕಳೆಯಿರಿ.
10+x^{2}-8x=3
-8x ಪಡೆದುಕೊಳ್ಳಲು -5x ಮತ್ತು -3x ಕೂಡಿಸಿ.
10+x^{2}-8x-3=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 3 ಕಳೆಯಿರಿ.
7+x^{2}-8x=0
7 ಪಡೆದುಕೊಳ್ಳಲು 10 ದಿಂದ 3 ಕಳೆಯಿರಿ.
x^{2}-8x+7=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 7}}{2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 1, b ಗೆ -8 ಮತ್ತು c ಗೆ 7 ಬದಲಿಸಿ.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 7}}{2}
ವರ್ಗ -8.
x=\frac{-\left(-8\right)±\sqrt{64-28}}{2}
7 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-8\right)±\sqrt{36}}{2}
-28 ಗೆ 64 ಸೇರಿಸಿ.
x=\frac{-\left(-8\right)±6}{2}
36 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{8±6}{2}
-8 ನ ವಿಲೋಮವು 8 ಆಗಿದೆ.
x=\frac{14}{2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{8±6}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 6 ಗೆ 8 ಸೇರಿಸಿ.
x=7
2 ದಿಂದ 14 ಭಾಗಿಸಿ.
x=\frac{2}{2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{8±6}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 8 ದಿಂದ 6 ಕಳೆಯಿರಿ.
x=1
2 ದಿಂದ 2 ಭಾಗಿಸಿ.
x=7 x=1
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
10+\left(x-5\right)x=\left(x+1\right)\times 3
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ ಯಾವುದೇ -1,5 ಮೌಲ್ಯಗಳಿಗೆ ಸಮನಾಗಿರಬಾರದು. ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು \left(x-5\right)\left(x+1\right), \left(x-5\right)\left(x+1\right),x+1,x-5 ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
10+x^{2}-5x=\left(x+1\right)\times 3
x ದಿಂದ x-5 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
10+x^{2}-5x=3x+3
3 ದಿಂದ x+1 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
10+x^{2}-5x-3x=3
ಎರಡೂ ಕಡೆಗಳಿಂದ 3x ಕಳೆಯಿರಿ.
10+x^{2}-8x=3
-8x ಪಡೆದುಕೊಳ್ಳಲು -5x ಮತ್ತು -3x ಕೂಡಿಸಿ.
x^{2}-8x=3-10
ಎರಡೂ ಕಡೆಗಳಿಂದ 10 ಕಳೆಯಿರಿ.
x^{2}-8x=-7
-7 ಪಡೆದುಕೊಳ್ಳಲು 3 ದಿಂದ 10 ಕಳೆಯಿರಿ.
x^{2}-8x+\left(-4\right)^{2}=-7+\left(-4\right)^{2}
-4 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -8 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -4 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-8x+16=-7+16
ವರ್ಗ -4.
x^{2}-8x+16=9
16 ಗೆ -7 ಸೇರಿಸಿ.
\left(x-4\right)^{2}=9
ಅಪವರ್ತನ x^{2}-8x+16. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-4\right)^{2}}=\sqrt{9}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-4=3 x-4=-3
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=7 x=1
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 4 ಸೇರಿಸಿ.