ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
t ಪರಿಹರಿಸಿ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

-5\left(1-t^{3}\right)=7\left(t-1\right)
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ t ವೇರಿಯೇಬಲ್ 1 ಗೆ ಸಮನಾಗಿರಬಾರದು. ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು 5\left(t-1\right), 1-t,5 ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
-5+5t^{3}=7\left(t-1\right)
1-t^{3} ದಿಂದ -5 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
-5+5t^{3}=7t-7
t-1 ದಿಂದ 7 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
-5+5t^{3}-7t=-7
ಎರಡೂ ಕಡೆಗಳಿಂದ 7t ಕಳೆಯಿರಿ.
-5+5t^{3}-7t+7=0
ಎರಡೂ ಬದಿಗಳಿಗೆ 7 ಸೇರಿಸಿ.
2+5t^{3}-7t=0
2 ಪಡೆದುಕೊಳ್ಳಲು -5 ಮತ್ತು 7 ಸೇರಿಸಿ.
5t^{3}-7t+2=0
ಸಮೀಕರಣವನ್ನು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಿಸಲು ಮರುಹೊಂದಿಸಿ. ಪದಗಳನ್ನು ಗರಿಷ್ಠದಿಂದ ಕನಿಷ್ಠ ಪವರ್‌ಗೆ ಹೊಂದಿಸಿ.
±\frac{2}{5},±2,±\frac{1}{5},±1
ಭಾಗಲಬ್ಧ ವರ್ಗಮೂಲ ಪ್ರಮೇಯದ ಮೂಲಕ, ಬಹುಪದೋಕ್ತಿಯ ತರ್ಕಬದ್ಧ ರೂಟ್‌ಗಳು \frac{p}{q} ಸವರೂಪದಲ್ಲಿವೆ, ಇಲ್ಲಿ p ಎನ್ನುವುದು 2 ಸ್ಥಿರ ಪದವನ್ನು ವಿಭಜಿಸುತ್ತದೆ ಮತ್ತು q ಎನ್ನುವುದು ಪ್ರಧಾನ ಗುಣಾಂಕ 5 ಅನ್ನು ವಿಭಜಿಸುತ್ತದೆ. ಎಲ್ಲಾ ಅಭ್ಯರ್ಥಿಗಳ ಪಟ್ಟಿ \frac{p}{q}.
t=1
ನಿಖರ ಮೌಲ್ಯದ ಮೂಲಕ ಸಣ್ಣದರಿಂದ ಆರಂಭಿಸಿ ಎಲ್ಲ ಪೂರ್ಣಾಂಕ ಮೌಲ್ಯಗಳನ್ನು ಪ್ರಯತ್ನಿಸುವ ಮೂಲಕ ಒಂದು ಅಂತಹ ವರ್ಗವನ್ನು ಕಂಡುಕೊಳ್ಳಿ. ಯಾವುದೇ ಪೂರ್ಣಾಂಕ ಮೂಲವನ್ನು ಕಂಡುಕೊಳ್ಳದಿದ್ದರೆ, ನಮ್ಮ ಭಿನ್ನಾಂಶಗಳನ್ನು ಪ್ರಯತ್ನಿಸಿ.
5t^{2}+5t-2=0
ಅಪವರ್ತನ ಪ್ರಮೇಯದ ಪ್ರಕಾರ, t-k ಎನ್ನುವುದು ಪ್ರತಿ ವರ್ಗಮೂಲ k ಕ್ಕೆ ಬಹುಪದೋಕ್ತಿಯ ಅಪವರ್ತನವಾಗಿದೆ. 5t^{2}+5t-2 ಪಡೆಯಲು t-1 ರಿಂದ 5t^{3}-7t+2 ವಿಭಾಗಿಸಿ. ಫಲಿತಾಂಶವು 0 ಗೆ ಸಮಾಂತರವಾಗುವಲ್ಲಿ ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಿ.
t=\frac{-5±\sqrt{5^{2}-4\times 5\left(-2\right)}}{2\times 5}
ax^{2}+bx+c=0 ರೂಪದ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ಈ ವರ್ಗೀಯ ಸೂತ್ರ ಬಳಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗೀಯ ಸೂತ್ರದಲ್ಲಿ a ಗಾಗಿ 5 ಅನ್ನು,b ಗೆ 5 ಅನ್ನು ಮತ್ತು c ಗೆ -2 ಅನ್ನು ಬದಲಿ ಇರಿಸಿ.
t=\frac{-5±\sqrt{65}}{10}
ಲೆಕ್ಕಾಚಾರಗಳನ್ನು ಮಾಡಿ.
t=-\frac{\sqrt{65}}{10}-\frac{1}{2} t=\frac{\sqrt{65}}{10}-\frac{1}{2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ ಮತ್ತು ± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ 5t^{2}+5t-2=0 ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಿ.
t\in \emptyset
ವೇರಿಯೇಬಲ್ ಸಮನಾಗಿರಲು ಸಾಧ್ಯವಾಗದ ಮೌಲ್ಯಗಳನ್ನು ತೆಗೆದುಹಾಕಿ.
t=1 t=-\frac{\sqrt{65}}{10}-\frac{1}{2} t=\frac{\sqrt{65}}{10}-\frac{1}{2}
ಎಲ್ಲ ಕಂಡುಕೊಂಡ ಪರಿಹಾರಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
t=\frac{\sqrt{65}}{10}-\frac{1}{2} t=-\frac{\sqrt{65}}{10}-\frac{1}{2}
t ವೇರಿಯೇಬಲ್ 1 ಗೆ ಸಮಾನಾಗಿರಬಾರದು.