ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
m ಪರಿಹರಿಸಿ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

m+24=\left(m-4\right)m
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ m ವೇರಿಯೇಬಲ್ ಯಾವುದೇ -24,4 ಮೌಲ್ಯಗಳಿಗೆ ಸಮನಾಗಿರಬಾರದು. ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು \left(m-4\right)\left(m+24\right), m-4,m+24 ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
m+24=m^{2}-4m
m ದಿಂದ m-4 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
m+24-m^{2}=-4m
ಎರಡೂ ಕಡೆಗಳಿಂದ m^{2} ಕಳೆಯಿರಿ.
m+24-m^{2}+4m=0
ಎರಡೂ ಬದಿಗಳಿಗೆ 4m ಸೇರಿಸಿ.
5m+24-m^{2}=0
5m ಪಡೆದುಕೊಳ್ಳಲು m ಮತ್ತು 4m ಕೂಡಿಸಿ.
-m^{2}+5m+24=0
ಬಹುಪದೋಕ್ತಿಯನ್ನು ಪ್ರಮಾಣಿತ ರೂಪದಲ್ಲಿ ಇರಿಸುವ ಮೂಲಕ ಅದನ್ನು ಮರುಆಯೋಜಿಸಿ. ನಿಯಮಗಳನ್ನು ಅಧಿಕದಿಂದ ಕಡಿಮೆ ಘಾತದ ಕ್ರಮದಲ್ಲಿ ಇರಿಸಿ.
a+b=5 ab=-24=-24
ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಲು, ಗುಂಪುಗೊಳಿಸುವ ಮೂಲಕ ಎಡಭಾಗದಲ್ಲಿ ಅಪವರ್ತನಗೊಳಿಸಿ. ಮೊದಲು, ಎಡಭಾಗವನ್ನು -m^{2}+am+bm+24 ಎಂಬುದಾಗಿ ಮರುಬರೆಯಬೇಕಾಗುತ್ತದೆ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
-1,24 -2,12 -3,8 -4,6
ab ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ವಿರುದ್ಧ ಚಿಹ್ನೆಗಳನ್ನು ಹೊಂದಿವೆ. a+b ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, ಧನಾತ್ಮಕ ಸಂಖ್ಯೆಯು ಋಣಾತ್ಮಕ ಸಂಖ್ಯೆಗಿಂತ ಅಧಿಕ ಪ್ರಮಾಣದ ಪರಿಪೂರ್ಣ ಮೌಲ್ಯವನ್ನು ಹೊಂದಿದೆ. ಉತ್ಪನ್ನ -24 ನೀಡುವ ಎಲ್ಲ ಈ ರೀತಿಯ ಪೂರ್ಣಾಂಕ ಜೋಡಿಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
-1+24=23 -2+12=10 -3+8=5 -4+6=2
ಪ್ರತಿ ಜೋಡಿಗಾಗಿ ಮೊತ್ತವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ.
a=8 b=-3
ಪರಿಹಾರವು 5 ಮೊತ್ತವನ್ನು ನೀಡುವ ಜೋಡಿ ಆಗಿದೆ.
\left(-m^{2}+8m\right)+\left(-3m+24\right)
\left(-m^{2}+8m\right)+\left(-3m+24\right) ನ ಹಾಗೆ -m^{2}+5m+24 ಅನ್ನು ಮರುಬರೆಯಿರಿ.
-m\left(m-8\right)-3\left(m-8\right)
ಮೊದಲನೆಯದರಲ್ಲಿ -m ಅನ್ನು ಮತ್ತು ಎರಡನೆಯ ಗುಂಪಿನಲ್ಲಿ -3 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(m-8\right)\left(-m-3\right)
ವಿತರಣೆಯ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಸಾಮಾನ್ಯ ಪದ m-8 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
m=8 m=-3
ಸಮೀಕರಣ ಪರಿಹಾರಗಳನ್ನು ಹುಡುಕಲು, m-8=0 ಮತ್ತು -m-3=0 ಪರಿಹರಿಸಿ.
m+24=\left(m-4\right)m
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ m ವೇರಿಯೇಬಲ್ ಯಾವುದೇ -24,4 ಮೌಲ್ಯಗಳಿಗೆ ಸಮನಾಗಿರಬಾರದು. ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು \left(m-4\right)\left(m+24\right), m-4,m+24 ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
m+24=m^{2}-4m
m ದಿಂದ m-4 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
m+24-m^{2}=-4m
ಎರಡೂ ಕಡೆಗಳಿಂದ m^{2} ಕಳೆಯಿರಿ.
m+24-m^{2}+4m=0
ಎರಡೂ ಬದಿಗಳಿಗೆ 4m ಸೇರಿಸಿ.
5m+24-m^{2}=0
5m ಪಡೆದುಕೊಳ್ಳಲು m ಮತ್ತು 4m ಕೂಡಿಸಿ.
-m^{2}+5m+24=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
m=\frac{-5±\sqrt{5^{2}-4\left(-1\right)\times 24}}{2\left(-1\right)}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ -1, b ಗೆ 5 ಮತ್ತು c ಗೆ 24 ಬದಲಿಸಿ.
m=\frac{-5±\sqrt{25-4\left(-1\right)\times 24}}{2\left(-1\right)}
ವರ್ಗ 5.
m=\frac{-5±\sqrt{25+4\times 24}}{2\left(-1\right)}
-1 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
m=\frac{-5±\sqrt{25+96}}{2\left(-1\right)}
24 ಅನ್ನು 4 ಬಾರಿ ಗುಣಿಸಿ.
m=\frac{-5±\sqrt{121}}{2\left(-1\right)}
96 ಗೆ 25 ಸೇರಿಸಿ.
m=\frac{-5±11}{2\left(-1\right)}
121 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
m=\frac{-5±11}{-2}
-1 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
m=\frac{6}{-2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ m=\frac{-5±11}{-2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 11 ಗೆ -5 ಸೇರಿಸಿ.
m=-3
-2 ದಿಂದ 6 ಭಾಗಿಸಿ.
m=-\frac{16}{-2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ m=\frac{-5±11}{-2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -5 ದಿಂದ 11 ಕಳೆಯಿರಿ.
m=8
-2 ದಿಂದ -16 ಭಾಗಿಸಿ.
m=-3 m=8
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
m+24=\left(m-4\right)m
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ m ವೇರಿಯೇಬಲ್ ಯಾವುದೇ -24,4 ಮೌಲ್ಯಗಳಿಗೆ ಸಮನಾಗಿರಬಾರದು. ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು \left(m-4\right)\left(m+24\right), m-4,m+24 ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
m+24=m^{2}-4m
m ದಿಂದ m-4 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
m+24-m^{2}=-4m
ಎರಡೂ ಕಡೆಗಳಿಂದ m^{2} ಕಳೆಯಿರಿ.
m+24-m^{2}+4m=0
ಎರಡೂ ಬದಿಗಳಿಗೆ 4m ಸೇರಿಸಿ.
5m+24-m^{2}=0
5m ಪಡೆದುಕೊಳ್ಳಲು m ಮತ್ತು 4m ಕೂಡಿಸಿ.
5m-m^{2}=-24
ಎರಡೂ ಕಡೆಗಳಿಂದ 24 ಕಳೆಯಿರಿ. ಶೂನ್ಯದಿಂದ ಏನನ್ನಾದರೂ ಕಳೆದರೆ ಅದರ ಋಣಾತ್ಮಕವನ್ನು ನೀಡುತ್ತದೆ.
-m^{2}+5m=-24
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
\frac{-m^{2}+5m}{-1}=-\frac{24}{-1}
-1 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
m^{2}+\frac{5}{-1}m=-\frac{24}{-1}
-1 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -1 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
m^{2}-5m=-\frac{24}{-1}
-1 ದಿಂದ 5 ಭಾಗಿಸಿ.
m^{2}-5m=24
-1 ದಿಂದ -24 ಭಾಗಿಸಿ.
m^{2}-5m+\left(-\frac{5}{2}\right)^{2}=24+\left(-\frac{5}{2}\right)^{2}
-\frac{5}{2} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -5 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{5}{2} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
m^{2}-5m+\frac{25}{4}=24+\frac{25}{4}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{5}{2} ವರ್ಗಗೊಳಿಸಿ.
m^{2}-5m+\frac{25}{4}=\frac{121}{4}
\frac{25}{4} ಗೆ 24 ಸೇರಿಸಿ.
\left(m-\frac{5}{2}\right)^{2}=\frac{121}{4}
ಅಪವರ್ತನ m^{2}-5m+\frac{25}{4}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(m-\frac{5}{2}\right)^{2}}=\sqrt{\frac{121}{4}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
m-\frac{5}{2}=\frac{11}{2} m-\frac{5}{2}=-\frac{11}{2}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
m=8 m=-3
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{5}{2} ಸೇರಿಸಿ.