ಮೌಲ್ಯಮಾಪನ
\frac{1}{a}
ವ್ಯತ್ಯಾಸ w.r.t. a
-\frac{1}{a^{2}}
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
\frac{1}{a-1}-\frac{2}{a\left(a-2\right)}+\frac{1}{a^{2}-3a+2}
ಅಪವರ್ತನ a^{2}-2a.
\frac{a\left(a-2\right)}{a\left(a-2\right)\left(a-1\right)}-\frac{2\left(a-1\right)}{a\left(a-2\right)\left(a-1\right)}+\frac{1}{a^{2}-3a+2}
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. a-1 ಮತ್ತು a\left(a-2\right) ಇವುಗಳ ಕನಿಷ್ಠ ಅಪವರ್ತ್ಯವು a\left(a-2\right)\left(a-1\right) ಆಗಿದೆ. \frac{a\left(a-2\right)}{a\left(a-2\right)} ಅನ್ನು \frac{1}{a-1} ಬಾರಿ ಗುಣಿಸಿ. \frac{a-1}{a-1} ಅನ್ನು \frac{2}{a\left(a-2\right)} ಬಾರಿ ಗುಣಿಸಿ.
\frac{a\left(a-2\right)-2\left(a-1\right)}{a\left(a-2\right)\left(a-1\right)}+\frac{1}{a^{2}-3a+2}
\frac{a\left(a-2\right)}{a\left(a-2\right)\left(a-1\right)} ಮತ್ತು \frac{2\left(a-1\right)}{a\left(a-2\right)\left(a-1\right)} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಕಳೆಯಿರಿ.
\frac{a^{2}-2a-2a+2}{a\left(a-2\right)\left(a-1\right)}+\frac{1}{a^{2}-3a+2}
a\left(a-2\right)-2\left(a-1\right) ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
\frac{a^{2}-4a+2}{a\left(a-2\right)\left(a-1\right)}+\frac{1}{a^{2}-3a+2}
a^{2}-2a-2a+2 ನಲ್ಲಿ ಅಂಶಗಳಂತೆ ಕೂಡಿಸಿ.
\frac{a^{2}-4a+2}{a\left(a-2\right)\left(a-1\right)}+\frac{1}{\left(a-2\right)\left(a-1\right)}
ಅಪವರ್ತನ a^{2}-3a+2.
\frac{a^{2}-4a+2}{a\left(a-2\right)\left(a-1\right)}+\frac{a}{a\left(a-2\right)\left(a-1\right)}
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. a\left(a-2\right)\left(a-1\right) ಮತ್ತು \left(a-2\right)\left(a-1\right) ಇವುಗಳ ಕನಿಷ್ಠ ಅಪವರ್ತ್ಯವು a\left(a-2\right)\left(a-1\right) ಆಗಿದೆ. \frac{a}{a} ಅನ್ನು \frac{1}{\left(a-2\right)\left(a-1\right)} ಬಾರಿ ಗುಣಿಸಿ.
\frac{a^{2}-4a+2+a}{a\left(a-2\right)\left(a-1\right)}
\frac{a^{2}-4a+2}{a\left(a-2\right)\left(a-1\right)} ಮತ್ತು \frac{a}{a\left(a-2\right)\left(a-1\right)} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಸೇರಿಸಿ.
\frac{a^{2}-3a+2}{a\left(a-2\right)\left(a-1\right)}
a^{2}-4a+2+a ನಲ್ಲಿ ಅಂಶಗಳಂತೆ ಕೂಡಿಸಿ.
\frac{\left(a-2\right)\left(a-1\right)}{a\left(a-2\right)\left(a-1\right)}
ಈಗಾಗಲೇ \frac{a^{2}-3a+2}{a\left(a-2\right)\left(a-1\right)} ನಲ್ಲಿ ಅಪವರ್ತನಗೊಳಿಸದ ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\frac{1}{a}
ಗಣಕ ಮತ್ತು ಛೇದ ಎರಡರಲ್ಲೂ \left(a-2\right)\left(a-1\right) ರದ್ದುಗೊಳಿಸಿ.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{1}{a-1}-\frac{2}{a\left(a-2\right)}+\frac{1}{a^{2}-3a+2})
ಅಪವರ್ತನ a^{2}-2a.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a\left(a-2\right)}{a\left(a-2\right)\left(a-1\right)}-\frac{2\left(a-1\right)}{a\left(a-2\right)\left(a-1\right)}+\frac{1}{a^{2}-3a+2})
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. a-1 ಮತ್ತು a\left(a-2\right) ಇವುಗಳ ಕನಿಷ್ಠ ಅಪವರ್ತ್ಯವು a\left(a-2\right)\left(a-1\right) ಆಗಿದೆ. \frac{a\left(a-2\right)}{a\left(a-2\right)} ಅನ್ನು \frac{1}{a-1} ಬಾರಿ ಗುಣಿಸಿ. \frac{a-1}{a-1} ಅನ್ನು \frac{2}{a\left(a-2\right)} ಬಾರಿ ಗುಣಿಸಿ.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a\left(a-2\right)-2\left(a-1\right)}{a\left(a-2\right)\left(a-1\right)}+\frac{1}{a^{2}-3a+2})
\frac{a\left(a-2\right)}{a\left(a-2\right)\left(a-1\right)} ಮತ್ತು \frac{2\left(a-1\right)}{a\left(a-2\right)\left(a-1\right)} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಕಳೆಯಿರಿ.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}-2a-2a+2}{a\left(a-2\right)\left(a-1\right)}+\frac{1}{a^{2}-3a+2})
a\left(a-2\right)-2\left(a-1\right) ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}-4a+2}{a\left(a-2\right)\left(a-1\right)}+\frac{1}{a^{2}-3a+2})
a^{2}-2a-2a+2 ನಲ್ಲಿ ಅಂಶಗಳಂತೆ ಕೂಡಿಸಿ.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}-4a+2}{a\left(a-2\right)\left(a-1\right)}+\frac{1}{\left(a-2\right)\left(a-1\right)})
ಅಪವರ್ತನ a^{2}-3a+2.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}-4a+2}{a\left(a-2\right)\left(a-1\right)}+\frac{a}{a\left(a-2\right)\left(a-1\right)})
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. a\left(a-2\right)\left(a-1\right) ಮತ್ತು \left(a-2\right)\left(a-1\right) ಇವುಗಳ ಕನಿಷ್ಠ ಅಪವರ್ತ್ಯವು a\left(a-2\right)\left(a-1\right) ಆಗಿದೆ. \frac{a}{a} ಅನ್ನು \frac{1}{\left(a-2\right)\left(a-1\right)} ಬಾರಿ ಗುಣಿಸಿ.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}-4a+2+a}{a\left(a-2\right)\left(a-1\right)})
\frac{a^{2}-4a+2}{a\left(a-2\right)\left(a-1\right)} ಮತ್ತು \frac{a}{a\left(a-2\right)\left(a-1\right)} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಸೇರಿಸಿ.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}-3a+2}{a\left(a-2\right)\left(a-1\right)})
a^{2}-4a+2+a ನಲ್ಲಿ ಅಂಶಗಳಂತೆ ಕೂಡಿಸಿ.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\left(a-2\right)\left(a-1\right)}{a\left(a-2\right)\left(a-1\right)})
ಈಗಾಗಲೇ \frac{a^{2}-3a+2}{a\left(a-2\right)\left(a-1\right)} ನಲ್ಲಿ ಅಪವರ್ತನಗೊಳಿಸದ ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{1}{a})
ಗಣಕ ಮತ್ತು ಛೇದ ಎರಡರಲ್ಲೂ \left(a-2\right)\left(a-1\right) ರದ್ದುಗೊಳಿಸಿ.
-a^{-1-1}
ax^{n} ವ್ಯುತ್ಪನ್ನವು nax^{n-1} ಆಗಿದೆ.
-a^{-2}
-1 ದಿಂದ 1 ಕಳೆಯಿರಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}