ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

x+1+\left(3x+1\right)\times 2=3\left(x+1\right)\left(3x+1\right)
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ ಯಾವುದೇ -1,-\frac{1}{3} ಮೌಲ್ಯಗಳಿಗೆ ಸಮನಾಗಿರಬಾರದು. ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು \left(x+1\right)\left(3x+1\right), 3x+1,x+1 ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
x+1+6x+2=3\left(x+1\right)\left(3x+1\right)
2 ದಿಂದ 3x+1 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
7x+1+2=3\left(x+1\right)\left(3x+1\right)
7x ಪಡೆದುಕೊಳ್ಳಲು x ಮತ್ತು 6x ಕೂಡಿಸಿ.
7x+3=3\left(x+1\right)\left(3x+1\right)
3 ಪಡೆದುಕೊಳ್ಳಲು 1 ಮತ್ತು 2 ಸೇರಿಸಿ.
7x+3=\left(3x+3\right)\left(3x+1\right)
x+1 ದಿಂದ 3 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
7x+3=9x^{2}+12x+3
3x+1 ರಿಂದು 3x+3 ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
7x+3-9x^{2}=12x+3
ಎರಡೂ ಕಡೆಗಳಿಂದ 9x^{2} ಕಳೆಯಿರಿ.
7x+3-9x^{2}-12x=3
ಎರಡೂ ಕಡೆಗಳಿಂದ 12x ಕಳೆಯಿರಿ.
-5x+3-9x^{2}=3
-5x ಪಡೆದುಕೊಳ್ಳಲು 7x ಮತ್ತು -12x ಕೂಡಿಸಿ.
-5x+3-9x^{2}-3=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 3 ಕಳೆಯಿರಿ.
-5x-9x^{2}=0
0 ಪಡೆದುಕೊಳ್ಳಲು 3 ದಿಂದ 3 ಕಳೆಯಿರಿ.
-9x^{2}-5x=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}}}{2\left(-9\right)}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ -9, b ಗೆ -5 ಮತ್ತು c ಗೆ 0 ಬದಲಿಸಿ.
x=\frac{-\left(-5\right)±5}{2\left(-9\right)}
\left(-5\right)^{2} ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{5±5}{2\left(-9\right)}
-5 ನ ವಿಲೋಮವು 5 ಆಗಿದೆ.
x=\frac{5±5}{-18}
-9 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{10}{-18}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{5±5}{-18} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 5 ಗೆ 5 ಸೇರಿಸಿ.
x=-\frac{5}{9}
2 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{10}{-18} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
x=\frac{0}{-18}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{5±5}{-18} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 5 ದಿಂದ 5 ಕಳೆಯಿರಿ.
x=0
-18 ದಿಂದ 0 ಭಾಗಿಸಿ.
x=-\frac{5}{9} x=0
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
x+1+\left(3x+1\right)\times 2=3\left(x+1\right)\left(3x+1\right)
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ ಯಾವುದೇ -1,-\frac{1}{3} ಮೌಲ್ಯಗಳಿಗೆ ಸಮನಾಗಿರಬಾರದು. ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು \left(x+1\right)\left(3x+1\right), 3x+1,x+1 ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
x+1+6x+2=3\left(x+1\right)\left(3x+1\right)
2 ದಿಂದ 3x+1 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
7x+1+2=3\left(x+1\right)\left(3x+1\right)
7x ಪಡೆದುಕೊಳ್ಳಲು x ಮತ್ತು 6x ಕೂಡಿಸಿ.
7x+3=3\left(x+1\right)\left(3x+1\right)
3 ಪಡೆದುಕೊಳ್ಳಲು 1 ಮತ್ತು 2 ಸೇರಿಸಿ.
7x+3=\left(3x+3\right)\left(3x+1\right)
x+1 ದಿಂದ 3 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
7x+3=9x^{2}+12x+3
3x+1 ರಿಂದು 3x+3 ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
7x+3-9x^{2}=12x+3
ಎರಡೂ ಕಡೆಗಳಿಂದ 9x^{2} ಕಳೆಯಿರಿ.
7x+3-9x^{2}-12x=3
ಎರಡೂ ಕಡೆಗಳಿಂದ 12x ಕಳೆಯಿರಿ.
-5x+3-9x^{2}=3
-5x ಪಡೆದುಕೊಳ್ಳಲು 7x ಮತ್ತು -12x ಕೂಡಿಸಿ.
-5x-9x^{2}=3-3
ಎರಡೂ ಕಡೆಗಳಿಂದ 3 ಕಳೆಯಿರಿ.
-5x-9x^{2}=0
0 ಪಡೆದುಕೊಳ್ಳಲು 3 ದಿಂದ 3 ಕಳೆಯಿರಿ.
-9x^{2}-5x=0
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
\frac{-9x^{2}-5x}{-9}=\frac{0}{-9}
-9 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\left(-\frac{5}{-9}\right)x=\frac{0}{-9}
-9 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -9 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}+\frac{5}{9}x=\frac{0}{-9}
-9 ದಿಂದ -5 ಭಾಗಿಸಿ.
x^{2}+\frac{5}{9}x=0
-9 ದಿಂದ 0 ಭಾಗಿಸಿ.
x^{2}+\frac{5}{9}x+\left(\frac{5}{18}\right)^{2}=\left(\frac{5}{18}\right)^{2}
\frac{5}{18} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ \frac{5}{9} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ \frac{5}{18} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}+\frac{5}{9}x+\frac{25}{324}=\frac{25}{324}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ \frac{5}{18} ವರ್ಗಗೊಳಿಸಿ.
\left(x+\frac{5}{18}\right)^{2}=\frac{25}{324}
ಅಪವರ್ತನ x^{2}+\frac{5}{9}x+\frac{25}{324}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x+\frac{5}{18}\right)^{2}}=\sqrt{\frac{25}{324}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x+\frac{5}{18}=\frac{5}{18} x+\frac{5}{18}=-\frac{5}{18}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=0 x=-\frac{5}{9}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{5}{18} ಕಳೆಯಿರಿ.