x ಪರಿಹರಿಸಿ
x=\frac{\sqrt{111}-6}{5}\approx 0.907130751
x=\frac{-\sqrt{111}-6}{5}\approx -3.307130751
ಗ್ರಾಫ್
ರಸಪ್ರಶ್ನೆ
Quadratic Equation
5 ಇದೇ ತರಹದ ಪ್ರಶ್ನೆಗಳು:
\frac { 1 } { 3 } x ^ { 2 } + \frac { 4 } { 5 } x = 1
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
\frac{1}{3}x^{2}+\frac{4}{5}x=1
ax^{2}+bx+c=0 ಫಾರ್ಮ್ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
\frac{1}{3}x^{2}+\frac{4}{5}x-1=1-1
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 1 ಕಳೆಯಿರಿ.
\frac{1}{3}x^{2}+\frac{4}{5}x-1=0
1 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
x=\frac{-\frac{4}{5}±\sqrt{\left(\frac{4}{5}\right)^{2}-4\times \frac{1}{3}\left(-1\right)}}{2\times \frac{1}{3}}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ \frac{1}{3}, b ಗೆ \frac{4}{5} ಮತ್ತು c ಗೆ -1 ಬದಲಿಸಿ.
x=\frac{-\frac{4}{5}±\sqrt{\frac{16}{25}-4\times \frac{1}{3}\left(-1\right)}}{2\times \frac{1}{3}}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ \frac{4}{5} ವರ್ಗಗೊಳಿಸಿ.
x=\frac{-\frac{4}{5}±\sqrt{\frac{16}{25}-\frac{4}{3}\left(-1\right)}}{2\times \frac{1}{3}}
\frac{1}{3} ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\frac{4}{5}±\sqrt{\frac{16}{25}+\frac{4}{3}}}{2\times \frac{1}{3}}
-1 ಅನ್ನು -\frac{4}{3} ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\frac{4}{5}±\sqrt{\frac{148}{75}}}{2\times \frac{1}{3}}
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ \frac{4}{3} ಗೆ \frac{16}{25} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
x=\frac{-\frac{4}{5}±\frac{2\sqrt{111}}{15}}{2\times \frac{1}{3}}
\frac{148}{75} ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{-\frac{4}{5}±\frac{2\sqrt{111}}{15}}{\frac{2}{3}}
\frac{1}{3} ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{\frac{2\sqrt{111}}{15}-\frac{4}{5}}{\frac{2}{3}}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-\frac{4}{5}±\frac{2\sqrt{111}}{15}}{\frac{2}{3}} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. \frac{2\sqrt{111}}{15} ಗೆ -\frac{4}{5} ಸೇರಿಸಿ.
x=\frac{\sqrt{111}-6}{5}
\frac{2}{3} ನ ವ್ಯುತ್ಕ್ರಮದಿಂದ -\frac{4}{5}+\frac{2\sqrt{111}}{15} ಗುಣಿಸುವ ಮೂಲಕ \frac{2}{3} ದಿಂದ -\frac{4}{5}+\frac{2\sqrt{111}}{15} ಭಾಗಿಸಿ.
x=\frac{-\frac{2\sqrt{111}}{15}-\frac{4}{5}}{\frac{2}{3}}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-\frac{4}{5}±\frac{2\sqrt{111}}{15}}{\frac{2}{3}} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -\frac{4}{5} ದಿಂದ \frac{2\sqrt{111}}{15} ಕಳೆಯಿರಿ.
x=\frac{-\sqrt{111}-6}{5}
\frac{2}{3} ನ ವ್ಯುತ್ಕ್ರಮದಿಂದ -\frac{4}{5}-\frac{2\sqrt{111}}{15} ಗುಣಿಸುವ ಮೂಲಕ \frac{2}{3} ದಿಂದ -\frac{4}{5}-\frac{2\sqrt{111}}{15} ಭಾಗಿಸಿ.
x=\frac{\sqrt{111}-6}{5} x=\frac{-\sqrt{111}-6}{5}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
\frac{1}{3}x^{2}+\frac{4}{5}x=1
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್ನಲ್ಲಿ ಇರಬೇಕು.
\frac{\frac{1}{3}x^{2}+\frac{4}{5}x}{\frac{1}{3}}=\frac{1}{\frac{1}{3}}
3 ಮೂಲಕ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
x^{2}+\frac{\frac{4}{5}}{\frac{1}{3}}x=\frac{1}{\frac{1}{3}}
\frac{1}{3} ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ \frac{1}{3} ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}+\frac{12}{5}x=\frac{1}{\frac{1}{3}}
\frac{1}{3} ನ ವ್ಯುತ್ಕ್ರಮದಿಂದ \frac{4}{5} ಗುಣಿಸುವ ಮೂಲಕ \frac{1}{3} ದಿಂದ \frac{4}{5} ಭಾಗಿಸಿ.
x^{2}+\frac{12}{5}x=3
\frac{1}{3} ನ ವ್ಯುತ್ಕ್ರಮದಿಂದ 1 ಗುಣಿಸುವ ಮೂಲಕ \frac{1}{3} ದಿಂದ 1 ಭಾಗಿಸಿ.
x^{2}+\frac{12}{5}x+\left(\frac{6}{5}\right)^{2}=3+\left(\frac{6}{5}\right)^{2}
\frac{6}{5} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ \frac{12}{5} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ \frac{6}{5} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}+\frac{12}{5}x+\frac{36}{25}=3+\frac{36}{25}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ \frac{6}{5} ವರ್ಗಗೊಳಿಸಿ.
x^{2}+\frac{12}{5}x+\frac{36}{25}=\frac{111}{25}
\frac{36}{25} ಗೆ 3 ಸೇರಿಸಿ.
\left(x+\frac{6}{5}\right)^{2}=\frac{111}{25}
ಅಪವರ್ತನ x^{2}+\frac{12}{5}x+\frac{36}{25}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x+\frac{6}{5}\right)^{2}}=\sqrt{\frac{111}{25}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x+\frac{6}{5}=\frac{\sqrt{111}}{5} x+\frac{6}{5}=-\frac{\sqrt{111}}{5}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{\sqrt{111}-6}{5} x=\frac{-\sqrt{111}-6}{5}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{6}{5} ಕಳೆಯಿರಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}