x ಪರಿಹರಿಸಿ
x=\frac{2\sqrt{3}}{3}-1\approx 0.154700538
x=-\frac{2\sqrt{3}}{3}-1\approx -2.154700538
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
-6-3x+3\left(x-2\right)\left(x+2\right)\left(-1\right)=3x+6-1
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ ಯಾವುದೇ -2,2 ಮೌಲ್ಯಗಳಿಗೆ ಸಮನಾಗಿರಬಾರದು. ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು 3\left(x-2\right)\left(x+2\right), 2-x,x-2,3x^{2}-12 ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
-6-3x-3\left(x-2\right)\left(x+2\right)=3x+6-1
-3 ಪಡೆದುಕೊಳ್ಳಲು 3 ಮತ್ತು -1 ಗುಣಿಸಿ.
-6-3x+\left(-3x+6\right)\left(x+2\right)=3x+6-1
x-2 ದಿಂದ -3 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
-6-3x-3x^{2}+12=3x+6-1
x+2 ರಿಂದು -3x+6 ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
6-3x-3x^{2}=3x+6-1
6 ಪಡೆದುಕೊಳ್ಳಲು -6 ಮತ್ತು 12 ಸೇರಿಸಿ.
6-3x-3x^{2}=3x+5
5 ಪಡೆದುಕೊಳ್ಳಲು 6 ದಿಂದ 1 ಕಳೆಯಿರಿ.
6-3x-3x^{2}-3x=5
ಎರಡೂ ಕಡೆಗಳಿಂದ 3x ಕಳೆಯಿರಿ.
6-6x-3x^{2}=5
-6x ಪಡೆದುಕೊಳ್ಳಲು -3x ಮತ್ತು -3x ಕೂಡಿಸಿ.
6-6x-3x^{2}-5=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 5 ಕಳೆಯಿರಿ.
1-6x-3x^{2}=0
1 ಪಡೆದುಕೊಳ್ಳಲು 6 ದಿಂದ 5 ಕಳೆಯಿರಿ.
-3x^{2}-6x+1=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-3\right)}}{2\left(-3\right)}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ -3, b ಗೆ -6 ಮತ್ತು c ಗೆ 1 ಬದಲಿಸಿ.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-3\right)}}{2\left(-3\right)}
ವರ್ಗ -6.
x=\frac{-\left(-6\right)±\sqrt{36+12}}{2\left(-3\right)}
-3 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-6\right)±\sqrt{48}}{2\left(-3\right)}
12 ಗೆ 36 ಸೇರಿಸಿ.
x=\frac{-\left(-6\right)±4\sqrt{3}}{2\left(-3\right)}
48 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{6±4\sqrt{3}}{2\left(-3\right)}
-6 ನ ವಿಲೋಮವು 6 ಆಗಿದೆ.
x=\frac{6±4\sqrt{3}}{-6}
-3 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{4\sqrt{3}+6}{-6}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{6±4\sqrt{3}}{-6} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 4\sqrt{3} ಗೆ 6 ಸೇರಿಸಿ.
x=-\frac{2\sqrt{3}}{3}-1
-6 ದಿಂದ 6+4\sqrt{3} ಭಾಗಿಸಿ.
x=\frac{6-4\sqrt{3}}{-6}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{6±4\sqrt{3}}{-6} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 6 ದಿಂದ 4\sqrt{3} ಕಳೆಯಿರಿ.
x=\frac{2\sqrt{3}}{3}-1
-6 ದಿಂದ 6-4\sqrt{3} ಭಾಗಿಸಿ.
x=-\frac{2\sqrt{3}}{3}-1 x=\frac{2\sqrt{3}}{3}-1
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
-6-3x+3\left(x-2\right)\left(x+2\right)\left(-1\right)=3x+6-1
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ ಯಾವುದೇ -2,2 ಮೌಲ್ಯಗಳಿಗೆ ಸಮನಾಗಿರಬಾರದು. ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು 3\left(x-2\right)\left(x+2\right), 2-x,x-2,3x^{2}-12 ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
-6-3x-3\left(x-2\right)\left(x+2\right)=3x+6-1
-3 ಪಡೆದುಕೊಳ್ಳಲು 3 ಮತ್ತು -1 ಗುಣಿಸಿ.
-6-3x+\left(-3x+6\right)\left(x+2\right)=3x+6-1
x-2 ದಿಂದ -3 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
-6-3x-3x^{2}+12=3x+6-1
x+2 ರಿಂದು -3x+6 ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
6-3x-3x^{2}=3x+6-1
6 ಪಡೆದುಕೊಳ್ಳಲು -6 ಮತ್ತು 12 ಸೇರಿಸಿ.
6-3x-3x^{2}=3x+5
5 ಪಡೆದುಕೊಳ್ಳಲು 6 ದಿಂದ 1 ಕಳೆಯಿರಿ.
6-3x-3x^{2}-3x=5
ಎರಡೂ ಕಡೆಗಳಿಂದ 3x ಕಳೆಯಿರಿ.
6-6x-3x^{2}=5
-6x ಪಡೆದುಕೊಳ್ಳಲು -3x ಮತ್ತು -3x ಕೂಡಿಸಿ.
-6x-3x^{2}=5-6
ಎರಡೂ ಕಡೆಗಳಿಂದ 6 ಕಳೆಯಿರಿ.
-6x-3x^{2}=-1
-1 ಪಡೆದುಕೊಳ್ಳಲು 5 ದಿಂದ 6 ಕಳೆಯಿರಿ.
-3x^{2}-6x=-1
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್ನಲ್ಲಿ ಇರಬೇಕು.
\frac{-3x^{2}-6x}{-3}=-\frac{1}{-3}
-3 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\left(-\frac{6}{-3}\right)x=-\frac{1}{-3}
-3 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -3 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}+2x=-\frac{1}{-3}
-3 ದಿಂದ -6 ಭಾಗಿಸಿ.
x^{2}+2x=\frac{1}{3}
-3 ದಿಂದ -1 ಭಾಗಿಸಿ.
x^{2}+2x+1^{2}=\frac{1}{3}+1^{2}
1 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ 2 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ 1 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}+2x+1=\frac{1}{3}+1
ವರ್ಗ 1.
x^{2}+2x+1=\frac{4}{3}
1 ಗೆ \frac{1}{3} ಸೇರಿಸಿ.
\left(x+1\right)^{2}=\frac{4}{3}
ಅಪವರ್ತನ x^{2}+2x+1. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x+1\right)^{2}}=\sqrt{\frac{4}{3}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x+1=\frac{2\sqrt{3}}{3} x+1=-\frac{2\sqrt{3}}{3}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{2\sqrt{3}}{3}-1 x=-\frac{2\sqrt{3}}{3}-1
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 1 ಕಳೆಯಿರಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}