ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ (ಸಂಕೀರ್ಣ ಪರಿಹಾರ)
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

\frac{1}{2}x-3-x^{2}=0
ಎರಡೂ ಕಡೆಗಳಿಂದ x^{2} ಕಳೆಯಿರಿ.
-x^{2}+\frac{1}{2}x-3=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-\frac{1}{2}±\sqrt{\left(\frac{1}{2}\right)^{2}-4\left(-1\right)\left(-3\right)}}{2\left(-1\right)}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ -1, b ಗೆ \frac{1}{2} ಮತ್ತು c ಗೆ -3 ಬದಲಿಸಿ.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}-4\left(-1\right)\left(-3\right)}}{2\left(-1\right)}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ \frac{1}{2} ವರ್ಗಗೊಳಿಸಿ.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}+4\left(-3\right)}}{2\left(-1\right)}
-1 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}-12}}{2\left(-1\right)}
-3 ಅನ್ನು 4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\frac{1}{2}±\sqrt{-\frac{47}{4}}}{2\left(-1\right)}
-12 ಗೆ \frac{1}{4} ಸೇರಿಸಿ.
x=\frac{-\frac{1}{2}±\frac{\sqrt{47}i}{2}}{2\left(-1\right)}
-\frac{47}{4} ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{-\frac{1}{2}±\frac{\sqrt{47}i}{2}}{-2}
-1 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-1+\sqrt{47}i}{-2\times 2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-\frac{1}{2}±\frac{\sqrt{47}i}{2}}{-2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. \frac{i\sqrt{47}}{2} ಗೆ -\frac{1}{2} ಸೇರಿಸಿ.
x=\frac{-\sqrt{47}i+1}{4}
-2 ದಿಂದ \frac{-1+i\sqrt{47}}{2} ಭಾಗಿಸಿ.
x=\frac{-\sqrt{47}i-1}{-2\times 2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-\frac{1}{2}±\frac{\sqrt{47}i}{2}}{-2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -\frac{1}{2} ದಿಂದ \frac{i\sqrt{47}}{2} ಕಳೆಯಿರಿ.
x=\frac{1+\sqrt{47}i}{4}
-2 ದಿಂದ \frac{-1-i\sqrt{47}}{2} ಭಾಗಿಸಿ.
x=\frac{-\sqrt{47}i+1}{4} x=\frac{1+\sqrt{47}i}{4}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
\frac{1}{2}x-3-x^{2}=0
ಎರಡೂ ಕಡೆಗಳಿಂದ x^{2} ಕಳೆಯಿರಿ.
\frac{1}{2}x-x^{2}=3
ಎರಡೂ ಬದಿಗಳಿಗೆ 3 ಸೇರಿಸಿ. ಯಾವುದಾದರ ಜೊತೆಗೆ ಶೂನ್ಯವನ್ನು ಸೇರಿಸಿದರೆ ಅದೇ ಮೊತ್ತ ಬರುತ್ತದೆ.
-x^{2}+\frac{1}{2}x=3
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
\frac{-x^{2}+\frac{1}{2}x}{-1}=\frac{3}{-1}
-1 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\frac{\frac{1}{2}}{-1}x=\frac{3}{-1}
-1 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -1 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}-\frac{1}{2}x=\frac{3}{-1}
-1 ದಿಂದ \frac{1}{2} ಭಾಗಿಸಿ.
x^{2}-\frac{1}{2}x=-3
-1 ದಿಂದ 3 ಭಾಗಿಸಿ.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=-3+\left(-\frac{1}{4}\right)^{2}
-\frac{1}{4} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -\frac{1}{2} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{1}{4} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-\frac{1}{2}x+\frac{1}{16}=-3+\frac{1}{16}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{1}{4} ವರ್ಗಗೊಳಿಸಿ.
x^{2}-\frac{1}{2}x+\frac{1}{16}=-\frac{47}{16}
\frac{1}{16} ಗೆ -3 ಸೇರಿಸಿ.
\left(x-\frac{1}{4}\right)^{2}=-\frac{47}{16}
ಅಪವರ್ತನ x^{2}-\frac{1}{2}x+\frac{1}{16}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{-\frac{47}{16}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-\frac{1}{4}=\frac{\sqrt{47}i}{4} x-\frac{1}{4}=-\frac{\sqrt{47}i}{4}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{1+\sqrt{47}i}{4} x=\frac{-\sqrt{47}i+1}{4}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{1}{4} ಸೇರಿಸಿ.