ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

x^{2}-4=\left(x-3\right)\left(2x+1\right)
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ ಯಾವುದೇ -2,2,3 ಮೌಲ್ಯಗಳಿಗೆ ಸಮನಾಗಿರಬಾರದು. ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು \left(x-3\right)\left(x-2\right)\left(x+2\right), x-3,x^{2}-4 ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
x^{2}-4=2x^{2}-5x-3
2x+1 ರಿಂದು x-3 ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
x^{2}-4-2x^{2}=-5x-3
ಎರಡೂ ಕಡೆಗಳಿಂದ 2x^{2} ಕಳೆಯಿರಿ.
-x^{2}-4=-5x-3
-x^{2} ಪಡೆದುಕೊಳ್ಳಲು x^{2} ಮತ್ತು -2x^{2} ಕೂಡಿಸಿ.
-x^{2}-4+5x=-3
ಎರಡೂ ಬದಿಗಳಿಗೆ 5x ಸೇರಿಸಿ.
-x^{2}-4+5x+3=0
ಎರಡೂ ಬದಿಗಳಿಗೆ 3 ಸೇರಿಸಿ.
-x^{2}-1+5x=0
-1 ಪಡೆದುಕೊಳ್ಳಲು -4 ಮತ್ತು 3 ಸೇರಿಸಿ.
-x^{2}+5x-1=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-5±\sqrt{5^{2}-4\left(-1\right)\left(-1\right)}}{2\left(-1\right)}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ -1, b ಗೆ 5 ಮತ್ತು c ಗೆ -1 ಬದಲಿಸಿ.
x=\frac{-5±\sqrt{25-4\left(-1\right)\left(-1\right)}}{2\left(-1\right)}
ವರ್ಗ 5.
x=\frac{-5±\sqrt{25+4\left(-1\right)}}{2\left(-1\right)}
-1 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-5±\sqrt{25-4}}{2\left(-1\right)}
-1 ಅನ್ನು 4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-5±\sqrt{21}}{2\left(-1\right)}
-4 ಗೆ 25 ಸೇರಿಸಿ.
x=\frac{-5±\sqrt{21}}{-2}
-1 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{\sqrt{21}-5}{-2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-5±\sqrt{21}}{-2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. \sqrt{21} ಗೆ -5 ಸೇರಿಸಿ.
x=\frac{5-\sqrt{21}}{2}
-2 ದಿಂದ -5+\sqrt{21} ಭಾಗಿಸಿ.
x=\frac{-\sqrt{21}-5}{-2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-5±\sqrt{21}}{-2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -5 ದಿಂದ \sqrt{21} ಕಳೆಯಿರಿ.
x=\frac{\sqrt{21}+5}{2}
-2 ದಿಂದ -5-\sqrt{21} ಭಾಗಿಸಿ.
x=\frac{5-\sqrt{21}}{2} x=\frac{\sqrt{21}+5}{2}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
x^{2}-4=\left(x-3\right)\left(2x+1\right)
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ ಯಾವುದೇ -2,2,3 ಮೌಲ್ಯಗಳಿಗೆ ಸಮನಾಗಿರಬಾರದು. ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು \left(x-3\right)\left(x-2\right)\left(x+2\right), x-3,x^{2}-4 ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
x^{2}-4=2x^{2}-5x-3
2x+1 ರಿಂದು x-3 ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
x^{2}-4-2x^{2}=-5x-3
ಎರಡೂ ಕಡೆಗಳಿಂದ 2x^{2} ಕಳೆಯಿರಿ.
-x^{2}-4=-5x-3
-x^{2} ಪಡೆದುಕೊಳ್ಳಲು x^{2} ಮತ್ತು -2x^{2} ಕೂಡಿಸಿ.
-x^{2}-4+5x=-3
ಎರಡೂ ಬದಿಗಳಿಗೆ 5x ಸೇರಿಸಿ.
-x^{2}+5x=-3+4
ಎರಡೂ ಬದಿಗಳಿಗೆ 4 ಸೇರಿಸಿ.
-x^{2}+5x=1
1 ಪಡೆದುಕೊಳ್ಳಲು -3 ಮತ್ತು 4 ಸೇರಿಸಿ.
\frac{-x^{2}+5x}{-1}=\frac{1}{-1}
-1 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\frac{5}{-1}x=\frac{1}{-1}
-1 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -1 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}-5x=\frac{1}{-1}
-1 ದಿಂದ 5 ಭಾಗಿಸಿ.
x^{2}-5x=-1
-1 ದಿಂದ 1 ಭಾಗಿಸಿ.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-1+\left(-\frac{5}{2}\right)^{2}
-\frac{5}{2} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -5 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{5}{2} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-5x+\frac{25}{4}=-1+\frac{25}{4}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{5}{2} ವರ್ಗಗೊಳಿಸಿ.
x^{2}-5x+\frac{25}{4}=\frac{21}{4}
\frac{25}{4} ಗೆ -1 ಸೇರಿಸಿ.
\left(x-\frac{5}{2}\right)^{2}=\frac{21}{4}
ಅಪವರ್ತನ x^{2}-5x+\frac{25}{4}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{21}{4}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-\frac{5}{2}=\frac{\sqrt{21}}{2} x-\frac{5}{2}=-\frac{\sqrt{21}}{2}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{\sqrt{21}+5}{2} x=\frac{5-\sqrt{21}}{2}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{5}{2} ಸೇರಿಸಿ.