ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
ಮೌಲ್ಯಮಾಪನ
Tick mark Image
ನೈಜ ಭಾಗ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

\frac{\left(1+2i\right)\left(1+2i\right)}{\left(1-2i\right)\left(1+2i\right)}
ಛೇದದ ಸಂಕೀರ್ಣ ಸಂಯುಗ್ಮದ ಮೂಲಕ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದ ಎರಡನ್ನೂ ಗುಣಿಸಿ, 1+2i.
\frac{\left(1+2i\right)\left(1+2i\right)}{1^{2}-2^{2}i^{2}}
ನಿಯಮವನ್ನು ಬಳಸಿಕೊಂಡು ಗುಣಾಕಾರವನ್ನು ವರ್ಗಗಳ ವ್ಯತ್ಯಾಸವಾಗಿ ಪರಿವರ್ತಿಸಬಹುದು: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(1+2i\right)\left(1+2i\right)}{5}
ವ್ಯಾಖ್ಯಾನದ ಮೂಲಕ, i^{2} ಎನ್ನುವುದು -1 ಆಗಿದೆ. ಛೇದವನ್ನು ಲೆಕ್ಕಹಾಕಿ.
\frac{1\times 1+1\times \left(2i\right)+2i\times 1+2\times 2i^{2}}{5}
ನೀವು ದ್ವಿಪದಗಳನ್ನು ಗುಣಿಸಿದಂತೆ 1+2i ಮತ್ತು 1+2i ಸಂಕೀರ್ಣ ಸಂಖ್ಯೆಗಳನ್ನು ಗುಣಿಸಿ.
\frac{1\times 1+1\times \left(2i\right)+2i\times 1+2\times 2\left(-1\right)}{5}
ವ್ಯಾಖ್ಯಾನದ ಮೂಲಕ, i^{2} ಎನ್ನುವುದು -1 ಆಗಿದೆ.
\frac{1+2i+2i-4}{5}
1\times 1+1\times \left(2i\right)+2i\times 1+2\times 2\left(-1\right) ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
\frac{1-4+\left(2+2\right)i}{5}
1+2i+2i-4 ನಲ್ಲಿ ನೈಜ ಮತ್ತು ಕಾಲ್ಪನಿಕ ಭಾಗಗಳನ್ನು ಕೂಡಿಸಿ.
\frac{-3+4i}{5}
1-4+\left(2+2\right)i ನಲ್ಲಿ ಸಂಕಲನ ಮಾಡಿ.
-\frac{3}{5}+\frac{4}{5}i
-\frac{3}{5}+\frac{4}{5}i ಪಡೆಯಲು 5 ರಿಂದ -3+4i ವಿಭಾಗಿಸಿ.
Re(\frac{\left(1+2i\right)\left(1+2i\right)}{\left(1-2i\right)\left(1+2i\right)})
\frac{1+2i}{1-2i} ನ ಗಣಕ ಮತ್ತು ಛೇದವನ್ನು, 1+2i ಗಣಕದ ಸಂಕೀರ್ಣ ಸಂಯೋಗದಿಂದ ಗುಣಿಸಿ.
Re(\frac{\left(1+2i\right)\left(1+2i\right)}{1^{2}-2^{2}i^{2}})
ನಿಯಮವನ್ನು ಬಳಸಿಕೊಂಡು ಗುಣಾಕಾರವನ್ನು ವರ್ಗಗಳ ವ್ಯತ್ಯಾಸವಾಗಿ ಪರಿವರ್ತಿಸಬಹುದು: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(1+2i\right)\left(1+2i\right)}{5})
ವ್ಯಾಖ್ಯಾನದ ಮೂಲಕ, i^{2} ಎನ್ನುವುದು -1 ಆಗಿದೆ. ಛೇದವನ್ನು ಲೆಕ್ಕಹಾಕಿ.
Re(\frac{1\times 1+1\times \left(2i\right)+2i\times 1+2\times 2i^{2}}{5})
ನೀವು ದ್ವಿಪದಗಳನ್ನು ಗುಣಿಸಿದಂತೆ 1+2i ಮತ್ತು 1+2i ಸಂಕೀರ್ಣ ಸಂಖ್ಯೆಗಳನ್ನು ಗುಣಿಸಿ.
Re(\frac{1\times 1+1\times \left(2i\right)+2i\times 1+2\times 2\left(-1\right)}{5})
ವ್ಯಾಖ್ಯಾನದ ಮೂಲಕ, i^{2} ಎನ್ನುವುದು -1 ಆಗಿದೆ.
Re(\frac{1+2i+2i-4}{5})
1\times 1+1\times \left(2i\right)+2i\times 1+2\times 2\left(-1\right) ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
Re(\frac{1-4+\left(2+2\right)i}{5})
1+2i+2i-4 ನಲ್ಲಿ ನೈಜ ಮತ್ತು ಕಾಲ್ಪನಿಕ ಭಾಗಗಳನ್ನು ಕೂಡಿಸಿ.
Re(\frac{-3+4i}{5})
1-4+\left(2+2\right)i ನಲ್ಲಿ ಸಂಕಲನ ಮಾಡಿ.
Re(-\frac{3}{5}+\frac{4}{5}i)
-\frac{3}{5}+\frac{4}{5}i ಪಡೆಯಲು 5 ರಿಂದ -3+4i ವಿಭಾಗಿಸಿ.
-\frac{3}{5}
-\frac{3}{5}+\frac{4}{5}i ನ ನೈಜ ಭಾಗವು -\frac{3}{5} ಆಗಿದೆ.