ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
t ಪರಿಹರಿಸಿ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

-t^{2}+4t-280=0
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ t ವೇರಿಯೇಬಲ್ ಯಾವುದೇ 0,4 ಮೌಲ್ಯಗಳಿಗೆ ಸಮನಾಗಿರಬಾರದು. t\left(t-4\right) ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
t=\frac{-4±\sqrt{4^{2}-4\left(-1\right)\left(-280\right)}}{2\left(-1\right)}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ -1, b ಗೆ 4 ಮತ್ತು c ಗೆ -280 ಬದಲಿಸಿ.
t=\frac{-4±\sqrt{16-4\left(-1\right)\left(-280\right)}}{2\left(-1\right)}
ವರ್ಗ 4.
t=\frac{-4±\sqrt{16+4\left(-280\right)}}{2\left(-1\right)}
-1 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
t=\frac{-4±\sqrt{16-1120}}{2\left(-1\right)}
-280 ಅನ್ನು 4 ಬಾರಿ ಗುಣಿಸಿ.
t=\frac{-4±\sqrt{-1104}}{2\left(-1\right)}
-1120 ಗೆ 16 ಸೇರಿಸಿ.
t=\frac{-4±4\sqrt{69}i}{2\left(-1\right)}
-1104 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
t=\frac{-4±4\sqrt{69}i}{-2}
-1 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
t=\frac{-4+4\sqrt{69}i}{-2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ t=\frac{-4±4\sqrt{69}i}{-2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 4i\sqrt{69} ಗೆ -4 ಸೇರಿಸಿ.
t=-2\sqrt{69}i+2
-2 ದಿಂದ -4+4i\sqrt{69} ಭಾಗಿಸಿ.
t=\frac{-4\sqrt{69}i-4}{-2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ t=\frac{-4±4\sqrt{69}i}{-2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -4 ದಿಂದ 4i\sqrt{69} ಕಳೆಯಿರಿ.
t=2+2\sqrt{69}i
-2 ದಿಂದ -4-4i\sqrt{69} ಭಾಗಿಸಿ.
t=-2\sqrt{69}i+2 t=2+2\sqrt{69}i
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
-t^{2}+4t-280=0
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ t ವೇರಿಯೇಬಲ್ ಯಾವುದೇ 0,4 ಮೌಲ್ಯಗಳಿಗೆ ಸಮನಾಗಿರಬಾರದು. t\left(t-4\right) ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
-t^{2}+4t=280
ಎರಡೂ ಬದಿಗಳಿಗೆ 280 ಸೇರಿಸಿ. ಯಾವುದಾದರ ಜೊತೆಗೆ ಶೂನ್ಯವನ್ನು ಸೇರಿಸಿದರೆ ಅದೇ ಮೊತ್ತ ಬರುತ್ತದೆ.
\frac{-t^{2}+4t}{-1}=\frac{280}{-1}
-1 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
t^{2}+\frac{4}{-1}t=\frac{280}{-1}
-1 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -1 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
t^{2}-4t=\frac{280}{-1}
-1 ದಿಂದ 4 ಭಾಗಿಸಿ.
t^{2}-4t=-280
-1 ದಿಂದ 280 ಭಾಗಿಸಿ.
t^{2}-4t+\left(-2\right)^{2}=-280+\left(-2\right)^{2}
-2 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -4 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -2 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
t^{2}-4t+4=-280+4
ವರ್ಗ -2.
t^{2}-4t+4=-276
4 ಗೆ -280 ಸೇರಿಸಿ.
\left(t-2\right)^{2}=-276
ಅಪವರ್ತನ t^{2}-4t+4. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(t-2\right)^{2}}=\sqrt{-276}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
t-2=2\sqrt{69}i t-2=-2\sqrt{69}i
ಸರಳೀಕೃತಗೊಳಿಸಿ.
t=2+2\sqrt{69}i t=-2\sqrt{69}i+2
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 2 ಸೇರಿಸಿ.