x ಪರಿಹರಿಸಿ
x = \frac{6 \sqrt{5}}{5} \approx 2.683281573
x = -\frac{6 \sqrt{5}}{5} \approx -2.683281573
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
3\left(x+2\right)^{2}+2\left(x^{2}-18\right)=12x+12
ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು 6, 2,3 ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
3\left(x^{2}+4x+4\right)+2\left(x^{2}-18\right)=12x+12
\left(x+2\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ಬಳಸಿ.
3x^{2}+12x+12+2\left(x^{2}-18\right)=12x+12
x^{2}+4x+4 ದಿಂದ 3 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
3x^{2}+12x+12+2x^{2}-36=12x+12
x^{2}-18 ದಿಂದ 2 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
5x^{2}+12x+12-36=12x+12
5x^{2} ಪಡೆದುಕೊಳ್ಳಲು 3x^{2} ಮತ್ತು 2x^{2} ಕೂಡಿಸಿ.
5x^{2}+12x-24=12x+12
-24 ಪಡೆದುಕೊಳ್ಳಲು 12 ದಿಂದ 36 ಕಳೆಯಿರಿ.
5x^{2}+12x-24-12x=12
ಎರಡೂ ಕಡೆಗಳಿಂದ 12x ಕಳೆಯಿರಿ.
5x^{2}-24=12
0 ಪಡೆದುಕೊಳ್ಳಲು 12x ಮತ್ತು -12x ಕೂಡಿಸಿ.
5x^{2}=12+24
ಎರಡೂ ಬದಿಗಳಿಗೆ 24 ಸೇರಿಸಿ.
5x^{2}=36
36 ಪಡೆದುಕೊಳ್ಳಲು 12 ಮತ್ತು 24 ಸೇರಿಸಿ.
x^{2}=\frac{36}{5}
5 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x=\frac{6\sqrt{5}}{5} x=-\frac{6\sqrt{5}}{5}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
3\left(x+2\right)^{2}+2\left(x^{2}-18\right)=12x+12
ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು 6, 2,3 ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
3\left(x^{2}+4x+4\right)+2\left(x^{2}-18\right)=12x+12
\left(x+2\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ಬಳಸಿ.
3x^{2}+12x+12+2\left(x^{2}-18\right)=12x+12
x^{2}+4x+4 ದಿಂದ 3 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
3x^{2}+12x+12+2x^{2}-36=12x+12
x^{2}-18 ದಿಂದ 2 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
5x^{2}+12x+12-36=12x+12
5x^{2} ಪಡೆದುಕೊಳ್ಳಲು 3x^{2} ಮತ್ತು 2x^{2} ಕೂಡಿಸಿ.
5x^{2}+12x-24=12x+12
-24 ಪಡೆದುಕೊಳ್ಳಲು 12 ದಿಂದ 36 ಕಳೆಯಿರಿ.
5x^{2}+12x-24-12x=12
ಎರಡೂ ಕಡೆಗಳಿಂದ 12x ಕಳೆಯಿರಿ.
5x^{2}-24=12
0 ಪಡೆದುಕೊಳ್ಳಲು 12x ಮತ್ತು -12x ಕೂಡಿಸಿ.
5x^{2}-24-12=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 12 ಕಳೆಯಿರಿ.
5x^{2}-36=0
-36 ಪಡೆದುಕೊಳ್ಳಲು -24 ದಿಂದ 12 ಕಳೆಯಿರಿ.
x=\frac{0±\sqrt{0^{2}-4\times 5\left(-36\right)}}{2\times 5}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 5, b ಗೆ 0 ಮತ್ತು c ಗೆ -36 ಬದಲಿಸಿ.
x=\frac{0±\sqrt{-4\times 5\left(-36\right)}}{2\times 5}
ವರ್ಗ 0.
x=\frac{0±\sqrt{-20\left(-36\right)}}{2\times 5}
5 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{0±\sqrt{720}}{2\times 5}
-36 ಅನ್ನು -20 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{0±12\sqrt{5}}{2\times 5}
720 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{0±12\sqrt{5}}{10}
5 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{6\sqrt{5}}{5}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{0±12\sqrt{5}}{10} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ.
x=-\frac{6\sqrt{5}}{5}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{0±12\sqrt{5}}{10} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ.
x=\frac{6\sqrt{5}}{5} x=-\frac{6\sqrt{5}}{5}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}