ಮೌಲ್ಯಮಾಪನ
\frac{47\sqrt{5}-56\sqrt{2}}{37}\approx 0.699979336
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{\left(3\sqrt{5}+2\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)}{3\sqrt{5}+2\sqrt{2}} ಅನ್ನು ಗುಣಿಸುವ ಮೂಲಕ ಛೇದವನ್ನು ಮತ್ತು 3\sqrt{5}-2\sqrt{2} ಮೂಲಕ ಛೇದ ಮತ್ತು ಅಂಶವನ್ನು ತರ್ಕಬದ್ಧವಾಗಿಸಿ.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{\left(3\sqrt{5}\right)^{2}-\left(2\sqrt{2}\right)^{2}}
\left(3\sqrt{5}+2\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right) ಪರಿಗಣಿಸಿ. ನಿಯಮವನ್ನು ಬಳಸಿಕೊಂಡು ಗುಣಾಕಾರವನ್ನು ವರ್ಗಗಳ ವ್ಯತ್ಯಾಸವಾಗಿ ಪರಿವರ್ತಿಸಬಹುದು: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{3^{2}\left(\sqrt{5}\right)^{2}-\left(2\sqrt{2}\right)^{2}}
\left(3\sqrt{5}\right)^{2} ವಿಸ್ತರಿಸಿ.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{9\left(\sqrt{5}\right)^{2}-\left(2\sqrt{2}\right)^{2}}
2 ನ ಘಾತಕ್ಕೆ 3 ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು 9 ಪಡೆಯಿರಿ.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{9\times 5-\left(2\sqrt{2}\right)^{2}}
\sqrt{5} ವರ್ಗವು 5 ಆಗಿದೆ.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{45-\left(2\sqrt{2}\right)^{2}}
45 ಪಡೆದುಕೊಳ್ಳಲು 9 ಮತ್ತು 5 ಗುಣಿಸಿ.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{45-2^{2}\left(\sqrt{2}\right)^{2}}
\left(2\sqrt{2}\right)^{2} ವಿಸ್ತರಿಸಿ.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{45-4\left(\sqrt{2}\right)^{2}}
2 ನ ಘಾತಕ್ಕೆ 2 ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು 4 ಪಡೆಯಿರಿ.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{45-4\times 2}
\sqrt{2} ವರ್ಗವು 2 ಆಗಿದೆ.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{45-8}
8 ಪಡೆದುಕೊಳ್ಳಲು 4 ಮತ್ತು 2 ಗುಣಿಸಿ.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{37}
37 ಪಡೆದುಕೊಳ್ಳಲು 45 ದಿಂದ 8 ಕಳೆಯಿರಿ.
\frac{\left(3\left(\sqrt{5}\right)^{2}+\sqrt{5}\sqrt{2}-3\sqrt{2}\sqrt{5}-\left(\sqrt{2}\right)^{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{37}
\sqrt{5}-\sqrt{2} ನ ಪ್ರತಿ ಪದವನ್ನು 3\sqrt{5}+\sqrt{2} ನ ಪ್ರತಿ ಪದದೊಂದಿಗೆ ಗುಣಾಕಾರ ಮಾಡುವ ಮೂಲಕ ವಿಭಾಜಕ ಗುಣವನ್ನು ಅನ್ವಯಿಸಿ.
\frac{\left(3\times 5+\sqrt{5}\sqrt{2}-3\sqrt{2}\sqrt{5}-\left(\sqrt{2}\right)^{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{37}
\sqrt{5} ವರ್ಗವು 5 ಆಗಿದೆ.
\frac{\left(15+\sqrt{5}\sqrt{2}-3\sqrt{2}\sqrt{5}-\left(\sqrt{2}\right)^{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{37}
15 ಪಡೆದುಕೊಳ್ಳಲು 3 ಮತ್ತು 5 ಗುಣಿಸಿ.
\frac{\left(15+\sqrt{10}-3\sqrt{2}\sqrt{5}-\left(\sqrt{2}\right)^{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{37}
\sqrt{5} ಮತ್ತು \sqrt{2} ಅನ್ನು ಗುಣಿಸಲು, ವರ್ಗಮೂಲದ ಅಡಿಯಲ್ಲಿರುವ ಸಂಖ್ಯೆಯನ್ನು ಗುಣಿಸಿ.
\frac{\left(15+\sqrt{10}-3\sqrt{10}-\left(\sqrt{2}\right)^{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{37}
\sqrt{2} ಮತ್ತು \sqrt{5} ಅನ್ನು ಗುಣಿಸಲು, ವರ್ಗಮೂಲದ ಅಡಿಯಲ್ಲಿರುವ ಸಂಖ್ಯೆಯನ್ನು ಗುಣಿಸಿ.
\frac{\left(15-2\sqrt{10}-\left(\sqrt{2}\right)^{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{37}
-2\sqrt{10} ಪಡೆದುಕೊಳ್ಳಲು \sqrt{10} ಮತ್ತು -3\sqrt{10} ಕೂಡಿಸಿ.
\frac{\left(15-2\sqrt{10}-2\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{37}
\sqrt{2} ವರ್ಗವು 2 ಆಗಿದೆ.
\frac{\left(13-2\sqrt{10}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{37}
13 ಪಡೆದುಕೊಳ್ಳಲು 15 ದಿಂದ 2 ಕಳೆಯಿರಿ.
\frac{39\sqrt{5}-26\sqrt{2}-6\sqrt{10}\sqrt{5}+4\sqrt{2}\sqrt{10}}{37}
13-2\sqrt{10} ನ ಪ್ರತಿ ಪದವನ್ನು 3\sqrt{5}-2\sqrt{2} ನ ಪ್ರತಿ ಪದದೊಂದಿಗೆ ಗುಣಾಕಾರ ಮಾಡುವ ಮೂಲಕ ವಿಭಾಜಕ ಗುಣವನ್ನು ಅನ್ವಯಿಸಿ.
\frac{39\sqrt{5}-26\sqrt{2}-6\sqrt{5}\sqrt{2}\sqrt{5}+4\sqrt{2}\sqrt{10}}{37}
ಅಪವರ್ತನ 10=5\times 2. ವರ್ಗಮೂಲಗಳ \sqrt{5}\sqrt{2} ಉತ್ಪನ್ನವಾಗಿ \sqrt{5\times 2} ಉತ್ಪನ್ನದ ವರ್ಗಮೂಲವನ್ನು ಪುನಃ ಬರೆಯಿರಿ.
\frac{39\sqrt{5}-26\sqrt{2}-6\times 5\sqrt{2}+4\sqrt{2}\sqrt{10}}{37}
5 ಪಡೆದುಕೊಳ್ಳಲು \sqrt{5} ಮತ್ತು \sqrt{5} ಗುಣಿಸಿ.
\frac{39\sqrt{5}-26\sqrt{2}-30\sqrt{2}+4\sqrt{2}\sqrt{10}}{37}
-30 ಪಡೆದುಕೊಳ್ಳಲು -6 ಮತ್ತು 5 ಗುಣಿಸಿ.
\frac{39\sqrt{5}-56\sqrt{2}+4\sqrt{2}\sqrt{10}}{37}
-56\sqrt{2} ಪಡೆದುಕೊಳ್ಳಲು -26\sqrt{2} ಮತ್ತು -30\sqrt{2} ಕೂಡಿಸಿ.
\frac{39\sqrt{5}-56\sqrt{2}+4\sqrt{2}\sqrt{2}\sqrt{5}}{37}
ಅಪವರ್ತನ 10=2\times 5. ವರ್ಗಮೂಲಗಳ \sqrt{2}\sqrt{5} ಉತ್ಪನ್ನವಾಗಿ \sqrt{2\times 5} ಉತ್ಪನ್ನದ ವರ್ಗಮೂಲವನ್ನು ಪುನಃ ಬರೆಯಿರಿ.
\frac{39\sqrt{5}-56\sqrt{2}+4\times 2\sqrt{5}}{37}
2 ಪಡೆದುಕೊಳ್ಳಲು \sqrt{2} ಮತ್ತು \sqrt{2} ಗುಣಿಸಿ.
\frac{39\sqrt{5}-56\sqrt{2}+8\sqrt{5}}{37}
8 ಪಡೆದುಕೊಳ್ಳಲು 4 ಮತ್ತು 2 ಗುಣಿಸಿ.
\frac{47\sqrt{5}-56\sqrt{2}}{37}
47\sqrt{5} ಪಡೆದುಕೊಳ್ಳಲು 39\sqrt{5} ಮತ್ತು 8\sqrt{5} ಕೂಡಿಸಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}