ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
q ಪರಿಹರಿಸಿ
Tick mark Image
p ಪರಿಹರಿಸಿ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

q\left(\sqrt{8}+2\right)=p
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ q ವೇರಿಯೇಬಲ್ 0 ಗೆ ಸಮನಾಗಿರಬಾರದು. q ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
q\left(2\sqrt{2}+2\right)=p
ಅಪವರ್ತನ 8=2^{2}\times 2. ವರ್ಗಮೂಲಗಳ \sqrt{2^{2}}\sqrt{2} ಉತ್ಪನ್ನವಾಗಿ \sqrt{2^{2}\times 2} ಉತ್ಪನ್ನದ ವರ್ಗಮೂಲವನ್ನು ಪುನಃ ಬರೆಯಿರಿ. 2^{2} ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
2q\sqrt{2}+2q=p
2\sqrt{2}+2 ದಿಂದ q ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
\left(2\sqrt{2}+2\right)q=p
q ಹೊಂದಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು ಕೂಡಿಸಿ.
\frac{\left(2\sqrt{2}+2\right)q}{2\sqrt{2}+2}=\frac{p}{2\sqrt{2}+2}
2\sqrt{2}+2 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
q=\frac{p}{2\sqrt{2}+2}
2\sqrt{2}+2 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 2\sqrt{2}+2 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
q=\frac{\sqrt{2}p-p}{2}
2\sqrt{2}+2 ದಿಂದ p ಭಾಗಿಸಿ.
q=\frac{\sqrt{2}p-p}{2}\text{, }q\neq 0
q ವೇರಿಯೇಬಲ್ 0 ಗೆ ಸಮಾನಾಗಿರಬಾರದು.