ಮೌಲ್ಯಮಾಪನ
\frac{1}{3}\approx 0.333333333
ಅಪವರ್ತನ
\frac{1}{3} = 0.3333333333333333
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
\frac{5\sqrt{3}-\sqrt{108}+\sqrt{27}}{3\sqrt{12}}
ಅಪವರ್ತನ 75=5^{2}\times 3. ವರ್ಗಮೂಲಗಳ \sqrt{5^{2}}\sqrt{3} ಉತ್ಪನ್ನವಾಗಿ \sqrt{5^{2}\times 3} ಉತ್ಪನ್ನದ ವರ್ಗಮೂಲವನ್ನು ಪುನಃ ಬರೆಯಿರಿ. 5^{2} ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
\frac{5\sqrt{3}-6\sqrt{3}+\sqrt{27}}{3\sqrt{12}}
ಅಪವರ್ತನ 108=6^{2}\times 3. ವರ್ಗಮೂಲಗಳ \sqrt{6^{2}}\sqrt{3} ಉತ್ಪನ್ನವಾಗಿ \sqrt{6^{2}\times 3} ಉತ್ಪನ್ನದ ವರ್ಗಮೂಲವನ್ನು ಪುನಃ ಬರೆಯಿರಿ. 6^{2} ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
\frac{-\sqrt{3}+\sqrt{27}}{3\sqrt{12}}
-\sqrt{3} ಪಡೆದುಕೊಳ್ಳಲು 5\sqrt{3} ಮತ್ತು -6\sqrt{3} ಕೂಡಿಸಿ.
\frac{-\sqrt{3}+3\sqrt{3}}{3\sqrt{12}}
ಅಪವರ್ತನ 27=3^{2}\times 3. ವರ್ಗಮೂಲಗಳ \sqrt{3^{2}}\sqrt{3} ಉತ್ಪನ್ನವಾಗಿ \sqrt{3^{2}\times 3} ಉತ್ಪನ್ನದ ವರ್ಗಮೂಲವನ್ನು ಪುನಃ ಬರೆಯಿರಿ. 3^{2} ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
\frac{2\sqrt{3}}{3\sqrt{12}}
2\sqrt{3} ಪಡೆದುಕೊಳ್ಳಲು -\sqrt{3} ಮತ್ತು 3\sqrt{3} ಕೂಡಿಸಿ.
\frac{2\sqrt{3}}{3\times 2\sqrt{3}}
ಅಪವರ್ತನ 12=2^{2}\times 3. ವರ್ಗಮೂಲಗಳ \sqrt{2^{2}}\sqrt{3} ಉತ್ಪನ್ನವಾಗಿ \sqrt{2^{2}\times 3} ಉತ್ಪನ್ನದ ವರ್ಗಮೂಲವನ್ನು ಪುನಃ ಬರೆಯಿರಿ. 2^{2} ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
\frac{2\sqrt{3}}{6\sqrt{3}}
6 ಪಡೆದುಕೊಳ್ಳಲು 3 ಮತ್ತು 2 ಗುಣಿಸಿ.
\frac{1}{3}
ಗಣಕ ಮತ್ತು ಛೇದ ಎರಡರಲ್ಲೂ 2\sqrt{3} ರದ್ದುಗೊಳಿಸಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}