ಮೌಲ್ಯಮಾಪನ
\frac{5\sqrt{3}+5\sqrt{7}-\sqrt{21}-25}{18}\approx -0.427420283
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
\frac{\left(\sqrt{3}-5\right)\left(\sqrt{7}-5\right)}{\left(\sqrt{7}+5\right)\left(\sqrt{7}-5\right)}
\frac{\sqrt{3}-5}{\sqrt{7}+5} ಅನ್ನು ಗುಣಿಸುವ ಮೂಲಕ ಛೇದವನ್ನು ಮತ್ತು \sqrt{7}-5 ಮೂಲಕ ಛೇದ ಮತ್ತು ಅಂಶವನ್ನು ತರ್ಕಬದ್ಧವಾಗಿಸಿ.
\frac{\left(\sqrt{3}-5\right)\left(\sqrt{7}-5\right)}{\left(\sqrt{7}\right)^{2}-5^{2}}
\left(\sqrt{7}+5\right)\left(\sqrt{7}-5\right) ಪರಿಗಣಿಸಿ. ನಿಯಮವನ್ನು ಬಳಸಿಕೊಂಡು ಗುಣಾಕಾರವನ್ನು ವರ್ಗಗಳ ವ್ಯತ್ಯಾಸವಾಗಿ ಪರಿವರ್ತಿಸಬಹುದು: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{3}-5\right)\left(\sqrt{7}-5\right)}{7-25}
ವರ್ಗ \sqrt{7}. ವರ್ಗ 5.
\frac{\left(\sqrt{3}-5\right)\left(\sqrt{7}-5\right)}{-18}
-18 ಪಡೆದುಕೊಳ್ಳಲು 7 ದಿಂದ 25 ಕಳೆಯಿರಿ.
\frac{\sqrt{3}\sqrt{7}-5\sqrt{3}-5\sqrt{7}+25}{-18}
\sqrt{3}-5 ನ ಪ್ರತಿ ಪದವನ್ನು \sqrt{7}-5 ನ ಪ್ರತಿ ಪದದೊಂದಿಗೆ ಗುಣಾಕಾರ ಮಾಡುವ ಮೂಲಕ ವಿಭಾಜಕ ಗುಣವನ್ನು ಅನ್ವಯಿಸಿ.
\frac{\sqrt{21}-5\sqrt{3}-5\sqrt{7}+25}{-18}
\sqrt{3} ಮತ್ತು \sqrt{7} ಅನ್ನು ಗುಣಿಸಲು, ವರ್ಗಮೂಲದ ಅಡಿಯಲ್ಲಿರುವ ಸಂಖ್ಯೆಯನ್ನು ಗುಣಿಸಿ.
\frac{-\sqrt{21}+5\sqrt{3}+5\sqrt{7}-25}{18}
ಅಂಶ ಮತ್ತು ಛೇದಗಳೆರಡನ್ನೂ -1 ರಿಂದ ಗುಣಿಸಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}