ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
ಮೌಲ್ಯಮಾಪನ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

\frac{\left(\sqrt{2}+\sqrt{5}\right)\sqrt{10}}{\left(\sqrt{10}\right)^{2}}
\frac{\sqrt{2}+\sqrt{5}}{\sqrt{10}} ಅನ್ನು ಗುಣಿಸುವ ಮೂಲಕ ಛೇದವನ್ನು ಮತ್ತು \sqrt{10} ಮೂಲಕ ಛೇದ ಮತ್ತು ಅಂಶವನ್ನು ತರ್ಕಬದ್ಧವಾಗಿಸಿ.
\frac{\left(\sqrt{2}+\sqrt{5}\right)\sqrt{10}}{10}
\sqrt{10} ವರ್ಗವು 10 ಆಗಿದೆ.
\frac{\sqrt{2}\sqrt{10}+\sqrt{5}\sqrt{10}}{10}
\sqrt{10} ದಿಂದ \sqrt{2}+\sqrt{5} ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
\frac{\sqrt{2}\sqrt{2}\sqrt{5}+\sqrt{5}\sqrt{10}}{10}
ಅಪವರ್ತನ 10=2\times 5. ವರ್ಗಮೂಲಗಳ \sqrt{2}\sqrt{5} ಉತ್ಪನ್ನವಾಗಿ \sqrt{2\times 5} ಉತ್ಪನ್ನದ ವರ್ಗಮೂಲವನ್ನು ಪುನಃ ಬರೆಯಿರಿ.
\frac{2\sqrt{5}+\sqrt{5}\sqrt{10}}{10}
2 ಪಡೆದುಕೊಳ್ಳಲು \sqrt{2} ಮತ್ತು \sqrt{2} ಗುಣಿಸಿ.
\frac{2\sqrt{5}+\sqrt{5}\sqrt{5}\sqrt{2}}{10}
ಅಪವರ್ತನ 10=5\times 2. ವರ್ಗಮೂಲಗಳ \sqrt{5}\sqrt{2} ಉತ್ಪನ್ನವಾಗಿ \sqrt{5\times 2} ಉತ್ಪನ್ನದ ವರ್ಗಮೂಲವನ್ನು ಪುನಃ ಬರೆಯಿರಿ.
\frac{2\sqrt{5}+5\sqrt{2}}{10}
5 ಪಡೆದುಕೊಳ್ಳಲು \sqrt{5} ಮತ್ತು \sqrt{5} ಗುಣಿಸಿ.