ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
ಮೌಲ್ಯಮಾಪನ
Tick mark Image
ವ್ಯತ್ಯಾಸ w.r.t. x
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

\frac{\frac{x}{x+5}}{\frac{x}{x+5}+\frac{5\left(x+5\right)}{x+5}}
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. \frac{x+5}{x+5} ಅನ್ನು 5 ಬಾರಿ ಗುಣಿಸಿ.
\frac{\frac{x}{x+5}}{\frac{x+5\left(x+5\right)}{x+5}}
\frac{x}{x+5} ಮತ್ತು \frac{5\left(x+5\right)}{x+5} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಸೇರಿಸಿ.
\frac{\frac{x}{x+5}}{\frac{x+5x+25}{x+5}}
x+5\left(x+5\right) ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
\frac{\frac{x}{x+5}}{\frac{6x+25}{x+5}}
x+5x+25 ನಲ್ಲಿ ಅಂಶಗಳಂತೆ ಕೂಡಿಸಿ.
\frac{x\left(x+5\right)}{\left(x+5\right)\left(6x+25\right)}
\frac{6x+25}{x+5} ನ ವ್ಯುತ್ಕ್ರಮದಿಂದ \frac{x}{x+5} ಗುಣಿಸುವ ಮೂಲಕ \frac{6x+25}{x+5} ದಿಂದ \frac{x}{x+5} ಭಾಗಿಸಿ.
\frac{x}{6x+25}
ಗಣಕ ಮತ್ತು ಛೇದ ಎರಡರಲ್ಲೂ x+5 ರದ್ದುಗೊಳಿಸಿ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{x}{x+5}}{\frac{x}{x+5}+\frac{5\left(x+5\right)}{x+5}})
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. \frac{x+5}{x+5} ಅನ್ನು 5 ಬಾರಿ ಗುಣಿಸಿ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{x}{x+5}}{\frac{x+5\left(x+5\right)}{x+5}})
\frac{x}{x+5} ಮತ್ತು \frac{5\left(x+5\right)}{x+5} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಸೇರಿಸಿ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{x}{x+5}}{\frac{x+5x+25}{x+5}})
x+5\left(x+5\right) ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{x}{x+5}}{\frac{6x+25}{x+5}})
x+5x+25 ನಲ್ಲಿ ಅಂಶಗಳಂತೆ ಕೂಡಿಸಿ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x\left(x+5\right)}{\left(x+5\right)\left(6x+25\right)})
\frac{6x+25}{x+5} ನ ವ್ಯುತ್ಕ್ರಮದಿಂದ \frac{x}{x+5} ಗುಣಿಸುವ ಮೂಲಕ \frac{6x+25}{x+5} ದಿಂದ \frac{x}{x+5} ಭಾಗಿಸಿ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x}{6x+25})
ಗಣಕ ಮತ್ತು ಛೇದ ಎರಡರಲ್ಲೂ x+5 ರದ್ದುಗೊಳಿಸಿ.
\frac{\left(6x^{1}+25\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1})-x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(6x^{1}+25)}{\left(6x^{1}+25\right)^{2}}
ಯಾವುದೇ ಎರಡು ವ್ಯತ್ಯಾಸವಿಲ್ಲದ ಕಾರ್ಯಗಳಿಗೆ, ಎರಡು ಕಾರ್ಯಗಳ ಭಾಗಲಬ್ಧ ವ್ಯುತ್ಪನ್ನವು ಸಂಖ್ಯಾಕಾರ ವ್ಯುತ್ಪನ್ನದ ಛೇದದ ಸಮಯವನ್ನು ಛೇದದ ವ್ಯುತ್ಪನ್ನದ ಸಂಖ್ಯಾಕಾರ ಸಮಯದಲ್ಲಿ ವ್ಯವಕಲಿಸುತ್ತದೆ, ಎಲ್ಲವನ್ನು ವರ್ಗಮಾಡಲಾದ ಛೇದದಿಂದ ವಿಭಜಿಸಲಾಗಿದೆ.
\frac{\left(6x^{1}+25\right)x^{1-1}-x^{1}\times 6x^{1-1}}{\left(6x^{1}+25\right)^{2}}
ಬಹುಪದೀಯದ ವ್ಯುತ್ಪತ್ತಿಯು ಅದರ ಪದಗಳ ವ್ಯುತ್ಪತ್ತಿಗಳ ಮೊತ್ತವಾಗಿದೆ. ಯಾವುದೇ ಸ್ಥಿರ ಪದದ ವ್ಯುತ್ಪತ್ತಿಯು 0 ಆಗಿದೆ. ax^{n} ನ ವ್ಯುತ್ಪತ್ತಿಯು nax^{n-1} ಆಗಿದೆ.
\frac{\left(6x^{1}+25\right)x^{0}-x^{1}\times 6x^{0}}{\left(6x^{1}+25\right)^{2}}
ಅಂಕಗಣಿತ ಮಾಡಿ.
\frac{6x^{1}x^{0}+25x^{0}-x^{1}\times 6x^{0}}{\left(6x^{1}+25\right)^{2}}
ವಿಭಾಜಕ ಗುಣಲಕ್ಷಣ ಬಳಸಿಕೊಂಡು ವಿಸ್ತರಿಸಿ.
\frac{6x^{1}+25x^{0}-6x^{1}}{\left(6x^{1}+25\right)^{2}}
ಒಂದೇ ಆಧಾರ ಸಂಖ್ಯೆಯ ಘಾತಗಳನ್ನು ಗುಣಿಸಲು ಅದರ ಘಾತಾಂಕಗಳನ್ನು ಸೇರಿಸಿ.
\frac{\left(6-6\right)x^{1}+25x^{0}}{\left(6x^{1}+25\right)^{2}}
ಪದಗಳಂತೆ ಕೂಡಿಸಿ.
\frac{25x^{0}}{\left(6x^{1}+25\right)^{2}}
6 ದಿಂದ 6 ಕಳೆಯಿರಿ.
\frac{25x^{0}}{\left(6x+25\right)^{2}}
ಯಾವುದೇ ಪದಕ್ಕೆ t, t^{1}=t.
\frac{25\times 1}{\left(6x+25\right)^{2}}
0, t^{0}=1 ಹೊರತುಪಡಿಸಿ ಯಾವುದೇ ಪದ t ಗೆ.
\frac{25}{\left(6x+25\right)^{2}}
t, t\times 1=t ಮತ್ತು 1t=t ಪದಕ್ಕೆ.