ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
ಮೌಲ್ಯಮಾಪನ
Tick mark Image
ಅಪವರ್ತನ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

\frac{\frac{3\left(2-\sqrt{3}\right)}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}-\frac{2}{2-\sqrt{3}}}{2-5\sqrt{3}}
\frac{3}{2+\sqrt{3}} ಅನ್ನು ಗುಣಿಸುವ ಮೂಲಕ ಛೇದವನ್ನು ಮತ್ತು 2-\sqrt{3} ಮೂಲಕ ಛೇದ ಮತ್ತು ಅಂಶವನ್ನು ತರ್ಕಬದ್ಧವಾಗಿಸಿ.
\frac{\frac{3\left(2-\sqrt{3}\right)}{2^{2}-\left(\sqrt{3}\right)^{2}}-\frac{2}{2-\sqrt{3}}}{2-5\sqrt{3}}
\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right) ಪರಿಗಣಿಸಿ. ನಿಯಮವನ್ನು ಬಳಸಿಕೊಂಡು ಗುಣಾಕಾರವನ್ನು ವರ್ಗಗಳ ವ್ಯತ್ಯಾಸವಾಗಿ ಪರಿವರ್ತಿಸಬಹುದು: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\frac{3\left(2-\sqrt{3}\right)}{4-3}-\frac{2}{2-\sqrt{3}}}{2-5\sqrt{3}}
ವರ್ಗ 2. ವರ್ಗ \sqrt{3}.
\frac{\frac{3\left(2-\sqrt{3}\right)}{1}-\frac{2}{2-\sqrt{3}}}{2-5\sqrt{3}}
1 ಪಡೆದುಕೊಳ್ಳಲು 4 ದಿಂದ 3 ಕಳೆಯಿರಿ.
\frac{3\left(2-\sqrt{3}\right)-\frac{2}{2-\sqrt{3}}}{2-5\sqrt{3}}
ಯಾವುದನ್ನಾದರೂ ಒಂದರಿಂದ ಭಾಗಿಸಿದರೆ ಅದನ್ನೇ ನೀಡುತ್ತದೆ.
\frac{3\left(2-\sqrt{3}\right)-\frac{2\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}}{2-5\sqrt{3}}
\frac{2}{2-\sqrt{3}} ಅನ್ನು ಗುಣಿಸುವ ಮೂಲಕ ಛೇದವನ್ನು ಮತ್ತು 2+\sqrt{3} ಮೂಲಕ ಛೇದ ಮತ್ತು ಅಂಶವನ್ನು ತರ್ಕಬದ್ಧವಾಗಿಸಿ.
\frac{3\left(2-\sqrt{3}\right)-\frac{2\left(2+\sqrt{3}\right)}{2^{2}-\left(\sqrt{3}\right)^{2}}}{2-5\sqrt{3}}
\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right) ಪರಿಗಣಿಸಿ. ನಿಯಮವನ್ನು ಬಳಸಿಕೊಂಡು ಗುಣಾಕಾರವನ್ನು ವರ್ಗಗಳ ವ್ಯತ್ಯಾಸವಾಗಿ ಪರಿವರ್ತಿಸಬಹುದು: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3\left(2-\sqrt{3}\right)-\frac{2\left(2+\sqrt{3}\right)}{4-3}}{2-5\sqrt{3}}
ವರ್ಗ 2. ವರ್ಗ \sqrt{3}.
\frac{3\left(2-\sqrt{3}\right)-\frac{2\left(2+\sqrt{3}\right)}{1}}{2-5\sqrt{3}}
1 ಪಡೆದುಕೊಳ್ಳಲು 4 ದಿಂದ 3 ಕಳೆಯಿರಿ.
\frac{3\left(2-\sqrt{3}\right)-2\left(2+\sqrt{3}\right)}{2-5\sqrt{3}}
ಯಾವುದನ್ನಾದರೂ ಒಂದರಿಂದ ಭಾಗಿಸಿದರೆ ಅದನ್ನೇ ನೀಡುತ್ತದೆ.
\frac{\left(3\left(2-\sqrt{3}\right)-2\left(2+\sqrt{3}\right)\right)\left(2+5\sqrt{3}\right)}{\left(2-5\sqrt{3}\right)\left(2+5\sqrt{3}\right)}
\frac{3\left(2-\sqrt{3}\right)-2\left(2+\sqrt{3}\right)}{2-5\sqrt{3}} ಅನ್ನು ಗುಣಿಸುವ ಮೂಲಕ ಛೇದವನ್ನು ಮತ್ತು 2+5\sqrt{3} ಮೂಲಕ ಛೇದ ಮತ್ತು ಅಂಶವನ್ನು ತರ್ಕಬದ್ಧವಾಗಿಸಿ.
\frac{\left(3\left(2-\sqrt{3}\right)-2\left(2+\sqrt{3}\right)\right)\left(2+5\sqrt{3}\right)}{2^{2}-\left(-5\sqrt{3}\right)^{2}}
\left(2-5\sqrt{3}\right)\left(2+5\sqrt{3}\right) ಪರಿಗಣಿಸಿ. ನಿಯಮವನ್ನು ಬಳಸಿಕೊಂಡು ಗುಣಾಕಾರವನ್ನು ವರ್ಗಗಳ ವ್ಯತ್ಯಾಸವಾಗಿ ಪರಿವರ್ತಿಸಬಹುದು: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3\left(2-\sqrt{3}\right)-2\left(2+\sqrt{3}\right)\right)\left(2+5\sqrt{3}\right)}{4-\left(-5\sqrt{3}\right)^{2}}
2 ನ ಘಾತಕ್ಕೆ 2 ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು 4 ಪಡೆಯಿರಿ.
\frac{\left(3\left(2-\sqrt{3}\right)-2\left(2+\sqrt{3}\right)\right)\left(2+5\sqrt{3}\right)}{4-\left(-5\right)^{2}\left(\sqrt{3}\right)^{2}}
\left(-5\sqrt{3}\right)^{2} ವಿಸ್ತರಿಸಿ.
\frac{\left(3\left(2-\sqrt{3}\right)-2\left(2+\sqrt{3}\right)\right)\left(2+5\sqrt{3}\right)}{4-25\left(\sqrt{3}\right)^{2}}
2 ನ ಘಾತಕ್ಕೆ -5 ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು 25 ಪಡೆಯಿರಿ.
\frac{\left(3\left(2-\sqrt{3}\right)-2\left(2+\sqrt{3}\right)\right)\left(2+5\sqrt{3}\right)}{4-25\times 3}
\sqrt{3} ವರ್ಗವು 3 ಆಗಿದೆ.
\frac{\left(3\left(2-\sqrt{3}\right)-2\left(2+\sqrt{3}\right)\right)\left(2+5\sqrt{3}\right)}{4-75}
75 ಪಡೆದುಕೊಳ್ಳಲು 25 ಮತ್ತು 3 ಗುಣಿಸಿ.
\frac{\left(3\left(2-\sqrt{3}\right)-2\left(2+\sqrt{3}\right)\right)\left(2+5\sqrt{3}\right)}{-71}
-71 ಪಡೆದುಕೊಳ್ಳಲು 4 ದಿಂದ 75 ಕಳೆಯಿರಿ.
\frac{\left(6-3\sqrt{3}-2\left(2+\sqrt{3}\right)\right)\left(2+5\sqrt{3}\right)}{-71}
2-\sqrt{3} ದಿಂದ 3 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
\frac{\left(6-3\sqrt{3}-\left(4+2\sqrt{3}\right)\right)\left(2+5\sqrt{3}\right)}{-71}
2+\sqrt{3} ದಿಂದ 2 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
\frac{\left(6-3\sqrt{3}-4-2\sqrt{3}\right)\left(2+5\sqrt{3}\right)}{-71}
4+2\sqrt{3} ವಿರುದ್ಧವನ್ನು ಹುಡುಕಲು, ಪ್ರತಿ ಪದದ ವಿರುದ್ಧ ಪದವನ್ನು ಹುಡುಕಿ.
\frac{\left(2-3\sqrt{3}-2\sqrt{3}\right)\left(2+5\sqrt{3}\right)}{-71}
2 ಪಡೆದುಕೊಳ್ಳಲು 6 ದಿಂದ 4 ಕಳೆಯಿರಿ.
\frac{\left(2-5\sqrt{3}\right)\left(2+5\sqrt{3}\right)}{-71}
-5\sqrt{3} ಪಡೆದುಕೊಳ್ಳಲು -3\sqrt{3} ಮತ್ತು -2\sqrt{3} ಕೂಡಿಸಿ.
\frac{2^{2}-\left(5\sqrt{3}\right)^{2}}{-71}
\left(2-5\sqrt{3}\right)\left(2+5\sqrt{3}\right) ಪರಿಗಣಿಸಿ. ನಿಯಮವನ್ನು ಬಳಸಿಕೊಂಡು ಗುಣಾಕಾರವನ್ನು ವರ್ಗಗಳ ವ್ಯತ್ಯಾಸವಾಗಿ ಪರಿವರ್ತಿಸಬಹುದು: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4-\left(5\sqrt{3}\right)^{2}}{-71}
2 ನ ಘಾತಕ್ಕೆ 2 ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು 4 ಪಡೆಯಿರಿ.
\frac{4-5^{2}\left(\sqrt{3}\right)^{2}}{-71}
\left(5\sqrt{3}\right)^{2} ವಿಸ್ತರಿಸಿ.
\frac{4-25\left(\sqrt{3}\right)^{2}}{-71}
2 ನ ಘಾತಕ್ಕೆ 5 ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು 25 ಪಡೆಯಿರಿ.
\frac{4-25\times 3}{-71}
\sqrt{3} ವರ್ಗವು 3 ಆಗಿದೆ.
\frac{4-75}{-71}
75 ಪಡೆದುಕೊಳ್ಳಲು 25 ಮತ್ತು 3 ಗುಣಿಸಿ.
\frac{-71}{-71}
-71 ಪಡೆದುಕೊಳ್ಳಲು 4 ದಿಂದ 75 ಕಳೆಯಿರಿ.
1
1 ಪಡೆಯಲು -71 ರಿಂದ -71 ವಿಭಾಗಿಸಿ.