ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
ಮೌಲ್ಯಮಾಪನ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

\frac{7\sqrt{3}-5\sqrt{2}}{4\sqrt{3}+\sqrt{18}}
ಅಪವರ್ತನ 48=4^{2}\times 3. ವರ್ಗಮೂಲಗಳ \sqrt{4^{2}}\sqrt{3} ಉತ್ಪನ್ನವಾಗಿ \sqrt{4^{2}\times 3} ಉತ್ಪನ್ನದ ವರ್ಗಮೂಲವನ್ನು ಪುನಃ ಬರೆಯಿರಿ. 4^{2} ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
\frac{7\sqrt{3}-5\sqrt{2}}{4\sqrt{3}+3\sqrt{2}}
ಅಪವರ್ತನ 18=3^{2}\times 2. ವರ್ಗಮೂಲಗಳ \sqrt{3^{2}}\sqrt{2} ಉತ್ಪನ್ನವಾಗಿ \sqrt{3^{2}\times 2} ಉತ್ಪನ್ನದ ವರ್ಗಮೂಲವನ್ನು ಪುನಃ ಬರೆಯಿರಿ. 3^{2} ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
\frac{\left(7\sqrt{3}-5\sqrt{2}\right)\left(4\sqrt{3}-3\sqrt{2}\right)}{\left(4\sqrt{3}+3\sqrt{2}\right)\left(4\sqrt{3}-3\sqrt{2}\right)}
\frac{7\sqrt{3}-5\sqrt{2}}{4\sqrt{3}+3\sqrt{2}} ಅನ್ನು ಗುಣಿಸುವ ಮೂಲಕ ಛೇದವನ್ನು ಮತ್ತು 4\sqrt{3}-3\sqrt{2} ಮೂಲಕ ಛೇದ ಮತ್ತು ಅಂಶವನ್ನು ತರ್ಕಬದ್ಧವಾಗಿಸಿ.
\frac{\left(7\sqrt{3}-5\sqrt{2}\right)\left(4\sqrt{3}-3\sqrt{2}\right)}{\left(4\sqrt{3}\right)^{2}-\left(3\sqrt{2}\right)^{2}}
\left(4\sqrt{3}+3\sqrt{2}\right)\left(4\sqrt{3}-3\sqrt{2}\right) ಪರಿಗಣಿಸಿ. ನಿಯಮವನ್ನು ಬಳಸಿಕೊಂಡು ಗುಣಾಕಾರವನ್ನು ವರ್ಗಗಳ ವ್ಯತ್ಯಾಸವಾಗಿ ಪರಿವರ್ತಿಸಬಹುದು: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(7\sqrt{3}-5\sqrt{2}\right)\left(4\sqrt{3}-3\sqrt{2}\right)}{4^{2}\left(\sqrt{3}\right)^{2}-\left(3\sqrt{2}\right)^{2}}
\left(4\sqrt{3}\right)^{2} ವಿಸ್ತರಿಸಿ.
\frac{\left(7\sqrt{3}-5\sqrt{2}\right)\left(4\sqrt{3}-3\sqrt{2}\right)}{16\left(\sqrt{3}\right)^{2}-\left(3\sqrt{2}\right)^{2}}
2 ನ ಘಾತಕ್ಕೆ 4 ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು 16 ಪಡೆಯಿರಿ.
\frac{\left(7\sqrt{3}-5\sqrt{2}\right)\left(4\sqrt{3}-3\sqrt{2}\right)}{16\times 3-\left(3\sqrt{2}\right)^{2}}
\sqrt{3} ವರ್ಗವು 3 ಆಗಿದೆ.
\frac{\left(7\sqrt{3}-5\sqrt{2}\right)\left(4\sqrt{3}-3\sqrt{2}\right)}{48-\left(3\sqrt{2}\right)^{2}}
48 ಪಡೆದುಕೊಳ್ಳಲು 16 ಮತ್ತು 3 ಗುಣಿಸಿ.
\frac{\left(7\sqrt{3}-5\sqrt{2}\right)\left(4\sqrt{3}-3\sqrt{2}\right)}{48-3^{2}\left(\sqrt{2}\right)^{2}}
\left(3\sqrt{2}\right)^{2} ವಿಸ್ತರಿಸಿ.
\frac{\left(7\sqrt{3}-5\sqrt{2}\right)\left(4\sqrt{3}-3\sqrt{2}\right)}{48-9\left(\sqrt{2}\right)^{2}}
2 ನ ಘಾತಕ್ಕೆ 3 ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು 9 ಪಡೆಯಿರಿ.
\frac{\left(7\sqrt{3}-5\sqrt{2}\right)\left(4\sqrt{3}-3\sqrt{2}\right)}{48-9\times 2}
\sqrt{2} ವರ್ಗವು 2 ಆಗಿದೆ.
\frac{\left(7\sqrt{3}-5\sqrt{2}\right)\left(4\sqrt{3}-3\sqrt{2}\right)}{48-18}
18 ಪಡೆದುಕೊಳ್ಳಲು 9 ಮತ್ತು 2 ಗುಣಿಸಿ.
\frac{\left(7\sqrt{3}-5\sqrt{2}\right)\left(4\sqrt{3}-3\sqrt{2}\right)}{30}
30 ಪಡೆದುಕೊಳ್ಳಲು 48 ದಿಂದ 18 ಕಳೆಯಿರಿ.
\frac{28\left(\sqrt{3}\right)^{2}-21\sqrt{3}\sqrt{2}-20\sqrt{3}\sqrt{2}+15\left(\sqrt{2}\right)^{2}}{30}
7\sqrt{3}-5\sqrt{2} ನ ಪ್ರತಿ ಪದವನ್ನು 4\sqrt{3}-3\sqrt{2} ನ ಪ್ರತಿ ಪದದೊಂದಿಗೆ ಗುಣಾಕಾರ ಮಾಡುವ ಮೂಲಕ ವಿಭಾಜಕ ಗುಣವನ್ನು ಅನ್ವಯಿಸಿ.
\frac{28\times 3-21\sqrt{3}\sqrt{2}-20\sqrt{3}\sqrt{2}+15\left(\sqrt{2}\right)^{2}}{30}
\sqrt{3} ವರ್ಗವು 3 ಆಗಿದೆ.
\frac{84-21\sqrt{3}\sqrt{2}-20\sqrt{3}\sqrt{2}+15\left(\sqrt{2}\right)^{2}}{30}
84 ಪಡೆದುಕೊಳ್ಳಲು 28 ಮತ್ತು 3 ಗುಣಿಸಿ.
\frac{84-21\sqrt{6}-20\sqrt{3}\sqrt{2}+15\left(\sqrt{2}\right)^{2}}{30}
\sqrt{3} ಮತ್ತು \sqrt{2} ಅನ್ನು ಗುಣಿಸಲು, ವರ್ಗಮೂಲದ ಅಡಿಯಲ್ಲಿರುವ ಸಂಖ್ಯೆಯನ್ನು ಗುಣಿಸಿ.
\frac{84-21\sqrt{6}-20\sqrt{6}+15\left(\sqrt{2}\right)^{2}}{30}
\sqrt{3} ಮತ್ತು \sqrt{2} ಅನ್ನು ಗುಣಿಸಲು, ವರ್ಗಮೂಲದ ಅಡಿಯಲ್ಲಿರುವ ಸಂಖ್ಯೆಯನ್ನು ಗುಣಿಸಿ.
\frac{84-41\sqrt{6}+15\left(\sqrt{2}\right)^{2}}{30}
-41\sqrt{6} ಪಡೆದುಕೊಳ್ಳಲು -21\sqrt{6} ಮತ್ತು -20\sqrt{6} ಕೂಡಿಸಿ.
\frac{84-41\sqrt{6}+15\times 2}{30}
\sqrt{2} ವರ್ಗವು 2 ಆಗಿದೆ.
\frac{84-41\sqrt{6}+30}{30}
30 ಪಡೆದುಕೊಳ್ಳಲು 15 ಮತ್ತು 2 ಗುಣಿಸಿ.
\frac{114-41\sqrt{6}}{30}
114 ಪಡೆದುಕೊಳ್ಳಲು 84 ಮತ್ತು 30 ಸೇರಿಸಿ.