ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
ಮೌಲ್ಯಮಾಪನ
Tick mark Image
ಅಪವರ್ತನ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

\frac{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}
\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}} ಅನ್ನು ಗುಣಿಸುವ ಮೂಲಕ ಛೇದವನ್ನು ಮತ್ತು \sqrt{5}+\sqrt{3} ಮೂಲಕ ಛೇದ ಮತ್ತು ಅಂಶವನ್ನು ತರ್ಕಬದ್ಧವಾಗಿಸಿ.
\frac{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}{\left(\sqrt{5}\right)^{2}-\left(\sqrt{3}\right)^{2}}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}
\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right) ಪರಿಗಣಿಸಿ. ನಿಯಮವನ್ನು ಬಳಸಿಕೊಂಡು ಗುಣಾಕಾರವನ್ನು ವರ್ಗಗಳ ವ್ಯತ್ಯಾಸವಾಗಿ ಪರಿವರ್ತಿಸಬಹುದು: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}{5-3}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}
ವರ್ಗ \sqrt{5}. ವರ್ಗ \sqrt{3}.
\frac{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}{2}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}
2 ಪಡೆದುಕೊಳ್ಳಲು 5 ದಿಂದ 3 ಕಳೆಯಿರಿ.
\frac{\left(\sqrt{5}+\sqrt{3}\right)^{2}}{2}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}
\left(\sqrt{5}+\sqrt{3}\right)^{2} ಪಡೆದುಕೊಳ್ಳಲು \sqrt{5}+\sqrt{3} ಮತ್ತು \sqrt{5}+\sqrt{3} ಗುಣಿಸಿ.
\frac{\left(\sqrt{5}\right)^{2}+2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}}{2}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}
\left(\sqrt{5}+\sqrt{3}\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ಬಳಸಿ.
\frac{5+2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}}{2}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}
\sqrt{5} ವರ್ಗವು 5 ಆಗಿದೆ.
\frac{5+2\sqrt{15}+\left(\sqrt{3}\right)^{2}}{2}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}
\sqrt{5} ಮತ್ತು \sqrt{3} ಅನ್ನು ಗುಣಿಸಲು, ವರ್ಗಮೂಲದ ಅಡಿಯಲ್ಲಿರುವ ಸಂಖ್ಯೆಯನ್ನು ಗುಣಿಸಿ.
\frac{5+2\sqrt{15}+3}{2}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}
\sqrt{3} ವರ್ಗವು 3 ಆಗಿದೆ.
\frac{8+2\sqrt{15}}{2}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}
8 ಪಡೆದುಕೊಳ್ಳಲು 5 ಮತ್ತು 3 ಸೇರಿಸಿ.
4+\sqrt{15}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}
4+\sqrt{15} ಪಡೆಯಲು 8+2\sqrt{15} ನ ಪ್ರತಿ ಪದವನ್ನು 2 ರಿಂದ ಭಾಗಿಸಿ.
4+\sqrt{15}+\frac{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}
\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}} ಅನ್ನು ಗುಣಿಸುವ ಮೂಲಕ ಛೇದವನ್ನು ಮತ್ತು \sqrt{5}-\sqrt{3} ಮೂಲಕ ಛೇದ ಮತ್ತು ಅಂಶವನ್ನು ತರ್ಕಬದ್ಧವಾಗಿಸಿ.
4+\sqrt{15}+\frac{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}\right)^{2}-\left(\sqrt{3}\right)^{2}}
\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right) ಪರಿಗಣಿಸಿ. ನಿಯಮವನ್ನು ಬಳಸಿಕೊಂಡು ಗುಣಾಕಾರವನ್ನು ವರ್ಗಗಳ ವ್ಯತ್ಯಾಸವಾಗಿ ಪರಿವರ್ತಿಸಬಹುದು: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
4+\sqrt{15}+\frac{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}{5-3}
ವರ್ಗ \sqrt{5}. ವರ್ಗ \sqrt{3}.
4+\sqrt{15}+\frac{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}{2}
2 ಪಡೆದುಕೊಳ್ಳಲು 5 ದಿಂದ 3 ಕಳೆಯಿರಿ.
4+\sqrt{15}+\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{2}
\left(\sqrt{5}-\sqrt{3}\right)^{2} ಪಡೆದುಕೊಳ್ಳಲು \sqrt{5}-\sqrt{3} ಮತ್ತು \sqrt{5}-\sqrt{3} ಗುಣಿಸಿ.
4+\sqrt{15}+\frac{\left(\sqrt{5}\right)^{2}-2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}}{2}
\left(\sqrt{5}-\sqrt{3}\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ಬಳಸಿ.
4+\sqrt{15}+\frac{5-2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}}{2}
\sqrt{5} ವರ್ಗವು 5 ಆಗಿದೆ.
4+\sqrt{15}+\frac{5-2\sqrt{15}+\left(\sqrt{3}\right)^{2}}{2}
\sqrt{5} ಮತ್ತು \sqrt{3} ಅನ್ನು ಗುಣಿಸಲು, ವರ್ಗಮೂಲದ ಅಡಿಯಲ್ಲಿರುವ ಸಂಖ್ಯೆಯನ್ನು ಗುಣಿಸಿ.
4+\sqrt{15}+\frac{5-2\sqrt{15}+3}{2}
\sqrt{3} ವರ್ಗವು 3 ಆಗಿದೆ.
4+\sqrt{15}+\frac{8-2\sqrt{15}}{2}
8 ಪಡೆದುಕೊಳ್ಳಲು 5 ಮತ್ತು 3 ಸೇರಿಸಿ.
4+\sqrt{15}+4-\sqrt{15}
4-\sqrt{15} ಪಡೆಯಲು 8-2\sqrt{15} ನ ಪ್ರತಿ ಪದವನ್ನು 2 ರಿಂದ ಭಾಗಿಸಿ.
8+\sqrt{15}-\sqrt{15}
8 ಪಡೆದುಕೊಳ್ಳಲು 4 ಮತ್ತು 4 ಸೇರಿಸಿ.
8
0 ಪಡೆದುಕೊಳ್ಳಲು \sqrt{15} ಮತ್ತು -\sqrt{15} ಕೂಡಿಸಿ.