ដោះស្រាយសម្រាប់ z
z = \frac{3}{2} = 1\frac{1}{2} = 1.5
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
z^{2}-3z+\frac{9}{4}=0
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយការប្រើរូបមន្តកាដ្រាទីក៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ រូបមន្តកាដ្រាទីកផ្ដល់នូវចម្លើយពីរ ចម្លើយមួយគឺនៅពេល ± ជាផលបូក និងចម្លើយមួយទៀតនៅពេលវាជាផលដក។
z=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times \frac{9}{4}}}{2}
សមីការរនេះមានទម្រង់ស្ដង់ដារ៖ ax^{2}+bx+c=0។ ជំនួស 1 សម្រាប់ a, -3 សម្រាប់ b និង \frac{9}{4} សម្រាប់ c នៅក្នុងរូបមន្តកាដ្រាទីក, \frac{-b±\sqrt{b^{2}-4ac}}{2a}។
z=\frac{-\left(-3\right)±\sqrt{9-4\times \frac{9}{4}}}{2}
ការ៉េ -3។
z=\frac{-\left(-3\right)±\sqrt{9-9}}{2}
គុណ -4 ដង \frac{9}{4}។
z=\frac{-\left(-3\right)±\sqrt{0}}{2}
បូក 9 ជាមួយ -9។
z=-\frac{-3}{2}
យកឬសការ៉េនៃ 0។
z=\frac{3}{2}
ភាពផ្ទុយគ្នានៃ -3 គឺ 3។
z^{2}-3z+\frac{9}{4}=0
សមីការរកាដ្រាទីកដូចសមីការរមួយនេះអាចត្រូវបានដោះស្រាយដោយការបំពេញការ៉េ សមីការរត្រូវតែដំបូងស្ថិតនៅក្នុងទម្រង់ x^{2}+bx=c។
\left(z-\frac{3}{2}\right)^{2}=0
ដាក់ជាកត្តា z^{2}-3z+\frac{9}{4} ។ ជាទូទៅ នៅពេល x^{2}+bx+c គឺជាការ៉េប្រាកដ វាតែងតែអាចត្រូវបានដាក់ជាកត្តាជា \left(x+\frac{b}{2}\right)^{2}។
\sqrt{\left(z-\frac{3}{2}\right)^{2}}=\sqrt{0}
យកឬសការ៉េនៃជ្រុងទាំងពីរនៃសមីការ។
z-\frac{3}{2}=0 z-\frac{3}{2}=0
ផ្ទៀងផ្ទាត់។
z=\frac{3}{2} z=\frac{3}{2}
បូក \frac{3}{2} ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
z=\frac{3}{2}
សមីការរឥឡូវនេះត្រូវបានដោះស្រាយ។ ចម្លើយគឺដូចគ្នា។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}