រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

y^{2}-36-5y=0
ដក 5y ពីជ្រុងទាំងពីរ។
y^{2}-5y-36=0
តម្រៀបពហុធារសារឡើងវិញ​ដើម្បីដាក់វានៅក្នុងទម្រង់ស្ដង់ដារ។ ដាក់តួតាមលំដាប់ពីស្វ័យគុណខ្ពស់បំផុតទៅទាបបំផុត។
a+b=-5 ab=-36
ដើម្បីដោះស្រាយសមីការ សូមដាក់ជាកត្តា y^{2}-5y-36 ដោយប្រើរូបមន្ដ y^{2}+\left(a+b\right)y+ab=\left(y+a\right)\left(y+b\right)។ ដើម្បីរក a និង b សូមបង្កើត​ប្រព័ន្ធដែល​ត្រូវដោះស្រាយ។
1,-36 2,-18 3,-12 4,-9 6,-6
ដោយសារ ab ជាចំនួនអវិជ្ជមាន a និង b មានសញ្ញាផ្ទុយគ្នា។ ដោយសារ a+b ជាចំនួនអវិជ្ជមាន ចំនួនអវិជ្ជមានមានតម្លៃដាច់ខាតធំជាង​ចំនួនវិជ្ជមាន។ រាយ​ឈ្មោះគូ​ទាំងអស់ដែល​ផ្ដល់នូវផលគុណ -36។
1-36=-35 2-18=-16 3-12=-9 4-9=-5 6-6=0
គណនី​ផល​បូកសម្រាប់គូនីមួយៗ។
a=-9 b=4
ចម្លើយគឺជា​គូ ដែលផ្ដល់​នូវផលបូក -5 ។
\left(y-9\right)\left(y+4\right)
សរសេរកន្សោមដែលបានដាក់ជាកត្តា \left(y+a\right)\left(y+b\right) ដោយប្រើតម្លៃដែលទទួលបាន។
y=9 y=-4
ដើម្បីរកចម្លើយសមីការរ សូមដោះស្រាយ y-9=0 និង y+4=0។
y^{2}-36-5y=0
ដក 5y ពីជ្រុងទាំងពីរ។
y^{2}-5y-36=0
តម្រៀបពហុធារសារឡើងវិញ​ដើម្បីដាក់វានៅក្នុងទម្រង់ស្ដង់ដារ។ ដាក់តួតាមលំដាប់ពីស្វ័យគុណខ្ពស់បំផុតទៅទាបបំផុត។
a+b=-5 ab=1\left(-36\right)=-36
ដើម្បីដោះស្រាយ​សមីការ សូមដាក់ផ្នែកខាងឆ្វេង​ដាក់ជាកត្តា​ដោយការដាក់ជាក្រុម។ ដំបូង ផ្នែកខាងឆ្វេងត្រូវតែសរសេរឡើងវិញជា y^{2}+ay+by-36។ ដើម្បីរក a និង b សូមបង្កើត​ប្រព័ន្ធដែល​ត្រូវដោះស្រាយ។
1,-36 2,-18 3,-12 4,-9 6,-6
ដោយសារ ab ជាចំនួនអវិជ្ជមាន a និង b មានសញ្ញាផ្ទុយគ្នា។ ដោយសារ a+b ជាចំនួនអវិជ្ជមាន ចំនួនអវិជ្ជមានមានតម្លៃដាច់ខាតធំជាង​ចំនួនវិជ្ជមាន។ រាយ​ឈ្មោះគូ​ទាំងអស់ដែល​ផ្ដល់នូវផលគុណ -36។
1-36=-35 2-18=-16 3-12=-9 4-9=-5 6-6=0
គណនី​ផល​បូកសម្រាប់គូនីមួយៗ។
a=-9 b=4
ចម្លើយគឺជា​គូ ដែលផ្ដល់​នូវផលបូក -5 ។
\left(y^{2}-9y\right)+\left(4y-36\right)
សរសេរ y^{2}-5y-36 ឡើងវិញជា \left(y^{2}-9y\right)+\left(4y-36\right)។
y\left(y-9\right)+4\left(y-9\right)
ដាក់ជាកត្តា y នៅក្នុងក្រុមទីមួយ និង 4 ក្រុមទីពីរចេញ។
\left(y-9\right)\left(y+4\right)
ដាក់ជាកត្តាលក្ខណៈធម្មតា y-9 ដោយប្រើលក្ខណៈបំបែក។
y=9 y=-4
ដើម្បីរកចម្លើយសមីការរ សូមដោះស្រាយ y-9=0 និង y+4=0។
y^{2}-36-5y=0
ដក 5y ពីជ្រុងទាំងពីរ។
y^{2}-5y-36=0
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយការប្រើរូបមន្តកាដ្រាទីក៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ រូបមន្តកាដ្រាទីកផ្ដល់នូវចម្លើយពីរ ចម្លើយមួយគឺនៅពេល ± ជាផលបូក និងចម្លើយមួយទៀតនៅពេលវាជាផលដក។
y=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-36\right)}}{2}
សមីការរនេះមានទម្រង់ស្ដង់ដារ៖ ax^{2}+bx+c=0។ ជំនួស 1 សម្រាប់ a, -5 សម្រាប់ b និង -36 សម្រាប់ c នៅក្នុងរូបមន្តកាដ្រាទីក, \frac{-b±\sqrt{b^{2}-4ac}}{2a}។
y=\frac{-\left(-5\right)±\sqrt{25-4\left(-36\right)}}{2}
ការ៉េ -5។
y=\frac{-\left(-5\right)±\sqrt{25+144}}{2}
គុណ -4 ដង -36។
y=\frac{-\left(-5\right)±\sqrt{169}}{2}
បូក 25 ជាមួយ 144។
y=\frac{-\left(-5\right)±13}{2}
យកឬសការ៉េនៃ 169។
y=\frac{5±13}{2}
ភាពផ្ទុយគ្នានៃ -5 គឺ 5។
y=\frac{18}{2}
ឥឡូវដោះស្រាយសមីការរ y=\frac{5±13}{2} នៅពេល ± គឺជាសញ្ញាបូក។ បូក 5 ជាមួយ 13។
y=9
ចែក 18 នឹង 2។
y=-\frac{8}{2}
ឥឡូវដោះស្រាយសមីការរ y=\frac{5±13}{2} នៅពេល ± គឺជាសញ្ញាដក។ ដក 13 ពី 5។
y=-4
ចែក -8 នឹង 2។
y=9 y=-4
សមីការរឥឡូវនេះត្រូវបានដោះស្រាយ។
y^{2}-36-5y=0
ដក 5y ពីជ្រុងទាំងពីរ។
y^{2}-5y=36
បន្ថែម 36 ទៅជ្រុងទាំងពីរ។ អ្វីមួយបូកសូន្យបានខ្លួនឯង។
y^{2}-5y+\left(-\frac{5}{2}\right)^{2}=36+\left(-\frac{5}{2}\right)^{2}
ចែក -5 ដែលជាមេគុណនៃតួ x នឹង 2 ដើម្បីបាន -\frac{5}{2}។ បន្ទាប់មក​បូកការ៉េនៃ -\frac{5}{2} ជាមួយ​ជ្រុងទាំងពីរនៃសមីការរ។ ជំហាននេះធ្វើឲ្យជ្រុងខាងឆ្វេងនៃសមីការរក្លាយជាការេប្រាកដមួយ។
y^{2}-5y+\frac{25}{4}=36+\frac{25}{4}
លើក -\frac{5}{2} ជាការ៉េដោយលើកជាការ៉េទាំងភាគយក និងភាគបែងនៃប្រភាគ។
y^{2}-5y+\frac{25}{4}=\frac{169}{4}
បូក 36 ជាមួយ \frac{25}{4}។
\left(y-\frac{5}{2}\right)^{2}=\frac{169}{4}
ដាក់ជាកត្តា y^{2}-5y+\frac{25}{4} ។ ជាទូទៅ នៅពេល x^{2}+bx+c គឺជាការ៉េប្រាកដ វាតែងតែអាចត្រូវបានដាក់ជាកត្តាជា \left(x+\frac{b}{2}\right)^{2}។
\sqrt{\left(y-\frac{5}{2}\right)^{2}}=\sqrt{\frac{169}{4}}
យក​ឬសការ៉េនៃជ្រុងទាំងពីរនៃសមីការ។
y-\frac{5}{2}=\frac{13}{2} y-\frac{5}{2}=-\frac{13}{2}
ផ្ទៀងផ្ទាត់។
y=9 y=-4
បូក \frac{5}{2} ជាមួយជ្រុងទាំងពីរនៃសមីការរ។