ដោះស្រាយសម្រាប់ x
x\neq 0
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
\frac{x^{3}}{-x}+x^{2}=0
បន្ថែម x^{2} ទៅជ្រុងទាំងពីរ។
\frac{x^{3}}{-x}+\frac{x^{2}\left(-1\right)x}{-x}=0
ដើម្បីបូក ឬដកកន្សោម ពន្លាតពួកវាដើម្បីធ្វើឲ្យភាគបែងរបស់ពួកវាដូចគ្នា។ គុណ x^{2} ដង \frac{-x}{-x}។
\frac{x^{3}+x^{2}\left(-1\right)x}{-x}=0
ដោយសារ \frac{x^{3}}{-x} និង \frac{x^{2}\left(-1\right)x}{-x} មានភាគបែងដូចគ្នា សូមបូកពួកវាដោយការបូកភាគយករបស់ពួកវា។
\frac{x^{3}-x^{3}}{-x}=0
ធ្វើផលគុណនៅក្នុង x^{3}+x^{2}\left(-1\right)x។
\frac{0}{-x}=0
បន្សំដូចជាតួនៅក្នុង x^{3}-x^{3}។
-0=0
អថេរ x មិនអាចស្មើនឹង 0 បានទេ ដោយសារការចែកនឹងសូន្យមិនត្រូវបានកំណត់។ ធ្វើប្រមាណវិធីគុណជ្រុងទាំងពីរនៃសមីការរដោយ x។
\text{true}
តម្រៀបលំដាប់តួឡើងវិញ។
x\in \mathrm{R}
នេះគឺជាពិតសម្រាប់ x ណាមួយ។
x\in \mathrm{R}\setminus 0
អថេរ x មិនអាចស្មើនឹង 0 បានទេ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}