រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

x^{2}-6x+9=20
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយការប្រើរូបមន្តកាដ្រាទីក៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ រូបមន្តកាដ្រាទីកផ្ដល់នូវចម្លើយពីរ ចម្លើយមួយគឺនៅពេល ± ជាផលបូក និងចម្លើយមួយទៀតនៅពេលវាជាផលដក។
x^{2}-6x+9-20=20-20
ដក 20 ពីជ្រុងទាំងពីរនៃសមីការរ។
x^{2}-6x+9-20=0
ការដក 20 ពីខ្លួនឯងនៅសល់ 0។
x^{2}-6x-11=0
ដក 20 ពី 9។
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-11\right)}}{2}
សមីការរនេះមានទម្រង់ស្ដង់ដារ៖ ax^{2}+bx+c=0។ ជំនួស 1 សម្រាប់ a, -6 សម្រាប់ b និង -11 សម្រាប់ c នៅក្នុងរូបមន្តកាដ្រាទីក, \frac{-b±\sqrt{b^{2}-4ac}}{2a}។
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-11\right)}}{2}
ការ៉េ -6។
x=\frac{-\left(-6\right)±\sqrt{36+44}}{2}
គុណ -4 ដង -11។
x=\frac{-\left(-6\right)±\sqrt{80}}{2}
បូក 36 ជាមួយ 44។
x=\frac{-\left(-6\right)±4\sqrt{5}}{2}
យកឬសការ៉េនៃ 80។
x=\frac{6±4\sqrt{5}}{2}
ភាពផ្ទុយគ្នានៃ -6 គឺ 6។
x=\frac{4\sqrt{5}+6}{2}
ឥឡូវដោះស្រាយសមីការរ x=\frac{6±4\sqrt{5}}{2} នៅពេល ± គឺជាសញ្ញាបូក។ បូក 6 ជាមួយ 4\sqrt{5}។
x=2\sqrt{5}+3
ចែក 6+4\sqrt{5} នឹង 2។
x=\frac{6-4\sqrt{5}}{2}
ឥឡូវដោះស្រាយសមីការរ x=\frac{6±4\sqrt{5}}{2} នៅពេល ± គឺជាសញ្ញាដក។ ដក 4\sqrt{5} ពី 6។
x=3-2\sqrt{5}
ចែក 6-4\sqrt{5} នឹង 2។
x=2\sqrt{5}+3 x=3-2\sqrt{5}
សមីការរឥឡូវនេះត្រូវបានដោះស្រាយ។
x^{2}-6x+9=20
សមីការរកាដ្រាទីកដូចសមីការរមួយនេះអាចត្រូវបានដោះស្រាយដោយ​ការបំពេញការ៉េ សមីការរត្រូវតែដំបូងស្ថិតនៅក្នុងទម្រង់ x^{2}+bx=c។
\left(x-3\right)^{2}=20
ដាក់ជាកត្តា x^{2}-6x+9 ។ ជាទូទៅ នៅពេល x^{2}+bx+c គឺជាការ៉េប្រាកដ វាតែងតែអាចត្រូវបានដាក់ជាកត្តាជា \left(x+\frac{b}{2}\right)^{2}។
\sqrt{\left(x-3\right)^{2}}=\sqrt{20}
យក​ឬសការ៉េនៃជ្រុងទាំងពីរនៃសមីការ។
x-3=2\sqrt{5} x-3=-2\sqrt{5}
ផ្ទៀងផ្ទាត់។
x=2\sqrt{5}+3 x=3-2\sqrt{5}
បូក 3 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។