ដោះស្រាយសម្រាប់ x (complex solution)
x=\frac{15+5\sqrt{7}i}{2}\approx 7.5+6.614378278i
x=\frac{-5\sqrt{7}i+15}{2}\approx 7.5-6.614378278i
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
x^{2}-15x+100=0
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយការប្រើរូបមន្តកាដ្រាទីក៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ រូបមន្តកាដ្រាទីកផ្ដល់នូវចម្លើយពីរ ចម្លើយមួយគឺនៅពេល ± ជាផលបូក និងចម្លើយមួយទៀតនៅពេលវាជាផលដក។
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\times 100}}{2}
សមីការរនេះមានទម្រង់ស្ដង់ដារ៖ ax^{2}+bx+c=0។ ជំនួស 1 សម្រាប់ a, -15 សម្រាប់ b និង 100 សម្រាប់ c នៅក្នុងរូបមន្តកាដ្រាទីក, \frac{-b±\sqrt{b^{2}-4ac}}{2a}។
x=\frac{-\left(-15\right)±\sqrt{225-4\times 100}}{2}
ការ៉េ -15។
x=\frac{-\left(-15\right)±\sqrt{225-400}}{2}
គុណ -4 ដង 100។
x=\frac{-\left(-15\right)±\sqrt{-175}}{2}
បូក 225 ជាមួយ -400។
x=\frac{-\left(-15\right)±5\sqrt{7}i}{2}
យកឬសការ៉េនៃ -175។
x=\frac{15±5\sqrt{7}i}{2}
ភាពផ្ទុយគ្នានៃ -15 គឺ 15។
x=\frac{15+5\sqrt{7}i}{2}
ឥឡូវដោះស្រាយសមីការរ x=\frac{15±5\sqrt{7}i}{2} នៅពេល ± គឺជាសញ្ញាបូក។ បូក 15 ជាមួយ 5i\sqrt{7}។
x=\frac{-5\sqrt{7}i+15}{2}
ឥឡូវដោះស្រាយសមីការរ x=\frac{15±5\sqrt{7}i}{2} នៅពេល ± គឺជាសញ្ញាដក។ ដក 5i\sqrt{7} ពី 15។
x=\frac{15+5\sqrt{7}i}{2} x=\frac{-5\sqrt{7}i+15}{2}
សមីការរឥឡូវនេះត្រូវបានដោះស្រាយ។
x^{2}-15x+100=0
សមីការរកាដ្រាទីកដូចសមីការរមួយនេះអាចត្រូវបានដោះស្រាយដោយការបំពេញការ៉េ សមីការរត្រូវតែដំបូងស្ថិតនៅក្នុងទម្រង់ x^{2}+bx=c។
x^{2}-15x+100-100=-100
ដក 100 ពីជ្រុងទាំងពីរនៃសមីការរ។
x^{2}-15x=-100
ការដក 100 ពីខ្លួនឯងនៅសល់ 0។
x^{2}-15x+\left(-\frac{15}{2}\right)^{2}=-100+\left(-\frac{15}{2}\right)^{2}
ចែក -15 ដែលជាមេគុណនៃតួ x នឹង 2 ដើម្បីបាន -\frac{15}{2}។ បន្ទាប់មកបូកការ៉េនៃ -\frac{15}{2} ជាមួយជ្រុងទាំងពីរនៃសមីការរ។ ជំហាននេះធ្វើឲ្យជ្រុងខាងឆ្វេងនៃសមីការរក្លាយជាការេប្រាកដមួយ។
x^{2}-15x+\frac{225}{4}=-100+\frac{225}{4}
លើក -\frac{15}{2} ជាការ៉េដោយលើកជាការ៉េទាំងភាគយក និងភាគបែងនៃប្រភាគ។
x^{2}-15x+\frac{225}{4}=-\frac{175}{4}
បូក -100 ជាមួយ \frac{225}{4}។
\left(x-\frac{15}{2}\right)^{2}=-\frac{175}{4}
ដាក់ជាកត្តា x^{2}-15x+\frac{225}{4} ។ ជាទូទៅ នៅពេល x^{2}+bx+c គឺជាការ៉េប្រាកដ វាតែងតែអាចត្រូវបានដាក់ជាកត្តាជា \left(x+\frac{b}{2}\right)^{2}។
\sqrt{\left(x-\frac{15}{2}\right)^{2}}=\sqrt{-\frac{175}{4}}
យកឬសការ៉េនៃជ្រុងទាំងពីរនៃសមីការ។
x-\frac{15}{2}=\frac{5\sqrt{7}i}{2} x-\frac{15}{2}=-\frac{5\sqrt{7}i}{2}
ផ្ទៀងផ្ទាត់។
x=\frac{15+5\sqrt{7}i}{2} x=\frac{-5\sqrt{7}i+15}{2}
បូក \frac{15}{2} ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}