ដោះស្រាយសម្រាប់ x
x=\sqrt{35}+7\approx 12.916079783
x=7-\sqrt{35}\approx 1.083920217
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
x^{2}-14x+14=0
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយការប្រើរូបមន្តកាដ្រាទីក៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ រូបមន្តកាដ្រាទីកផ្ដល់នូវចម្លើយពីរ ចម្លើយមួយគឺនៅពេល ± ជាផលបូក និងចម្លើយមួយទៀតនៅពេលវាជាផលដក។
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 14}}{2}
សមីការរនេះមានទម្រង់ស្ដង់ដារ៖ ax^{2}+bx+c=0។ ជំនួស 1 សម្រាប់ a, -14 សម្រាប់ b និង 14 សម្រាប់ c នៅក្នុងរូបមន្តកាដ្រាទីក, \frac{-b±\sqrt{b^{2}-4ac}}{2a}។
x=\frac{-\left(-14\right)±\sqrt{196-4\times 14}}{2}
ការ៉េ -14។
x=\frac{-\left(-14\right)±\sqrt{196-56}}{2}
គុណ -4 ដង 14។
x=\frac{-\left(-14\right)±\sqrt{140}}{2}
បូក 196 ជាមួយ -56។
x=\frac{-\left(-14\right)±2\sqrt{35}}{2}
យកឬសការ៉េនៃ 140។
x=\frac{14±2\sqrt{35}}{2}
ភាពផ្ទុយគ្នានៃ -14 គឺ 14។
x=\frac{2\sqrt{35}+14}{2}
ឥឡូវដោះស្រាយសមីការរ x=\frac{14±2\sqrt{35}}{2} នៅពេល ± គឺជាសញ្ញាបូក។ បូក 14 ជាមួយ 2\sqrt{35}។
x=\sqrt{35}+7
ចែក 14+2\sqrt{35} នឹង 2។
x=\frac{14-2\sqrt{35}}{2}
ឥឡូវដោះស្រាយសមីការរ x=\frac{14±2\sqrt{35}}{2} នៅពេល ± គឺជាសញ្ញាដក។ ដក 2\sqrt{35} ពី 14។
x=7-\sqrt{35}
ចែក 14-2\sqrt{35} នឹង 2។
x=\sqrt{35}+7 x=7-\sqrt{35}
សមីការរឥឡូវនេះត្រូវបានដោះស្រាយ។
x^{2}-14x+14=0
សមីការរកាដ្រាទីកដូចសមីការរមួយនេះអាចត្រូវបានដោះស្រាយដោយការបំពេញការ៉េ សមីការរត្រូវតែដំបូងស្ថិតនៅក្នុងទម្រង់ x^{2}+bx=c។
x^{2}-14x+14-14=-14
ដក 14 ពីជ្រុងទាំងពីរនៃសមីការរ។
x^{2}-14x=-14
ការដក 14 ពីខ្លួនឯងនៅសល់ 0។
x^{2}-14x+\left(-7\right)^{2}=-14+\left(-7\right)^{2}
ចែក -14 ដែលជាមេគុណនៃតួ x នឹង 2 ដើម្បីបាន -7។ បន្ទាប់មកបូកការ៉េនៃ -7 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។ ជំហាននេះធ្វើឲ្យជ្រុងខាងឆ្វេងនៃសមីការរក្លាយជាការេប្រាកដមួយ។
x^{2}-14x+49=-14+49
ការ៉េ -7។
x^{2}-14x+49=35
បូក -14 ជាមួយ 49។
\left(x-7\right)^{2}=35
ដាក់ជាកត្តា x^{2}-14x+49 ។ ជាទូទៅ នៅពេល x^{2}+bx+c គឺជាការ៉េប្រាកដ វាតែងតែអាចត្រូវបានដាក់ជាកត្តាជា \left(x+\frac{b}{2}\right)^{2}។
\sqrt{\left(x-7\right)^{2}}=\sqrt{35}
យកឬសការ៉េនៃជ្រុងទាំងពីរនៃសមីការ។
x-7=\sqrt{35} x-7=-\sqrt{35}
ផ្ទៀងផ្ទាត់។
x=\sqrt{35}+7 x=7-\sqrt{35}
បូក 7 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}