វាយតម្លៃ
\left(x-11\right)\left(x-3\right)
ដាក់ជាកត្តា
\left(x-11\right)\left(x-3\right)
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
x^{2}-14x+30+3
បន្សំ -13x និង -x ដើម្បីបាន -14x។
x^{2}-14x+33
បូក 30 និង 3 ដើម្បីបាន 33។
x^{2}-14x+33
គុណ និងបន្សំតួដូចគ្នា។
a+b=-14 ab=1\times 33=33
ដាក់ជាកត្តានូវកន្សោមដោយដាក់ជាក្រុម។ ដំបូង កន្សោមត្រូវតែសរសេរឡើងវិញជា x^{2}+ax+bx+33។ ដើម្បីរក a និង b សូមបង្កើតប្រព័ន្ធដែលត្រូវដោះស្រាយ។
-1,-33 -3,-11
ដោយសារ ab ជាចំនួនវិជ្ជមាន a និង b មានសញ្ញាដូចគ្នា។ ដោយសារ a+b ជាចំនួនអវិជ្ជមាន a ហើយ b ជាចំនួនអវិជ្ជមានទាំងពីរ។ រាយឈ្មោះគូទាំងអស់ដែលផ្ដល់នូវផលគុណ 33។
-1-33=-34 -3-11=-14
គណនីផលបូកសម្រាប់គូនីមួយៗ។
a=-11 b=-3
ចម្លើយគឺជាគូ ដែលផ្ដល់នូវផលបូក -14 ។
\left(x^{2}-11x\right)+\left(-3x+33\right)
សរសេរ x^{2}-14x+33 ឡើងវិញជា \left(x^{2}-11x\right)+\left(-3x+33\right)។
x\left(x-11\right)-3\left(x-11\right)
ដាក់ជាកត្តា x នៅក្នុងក្រុមទីមួយ និង -3 ក្រុមទីពីរចេញ។
\left(x-11\right)\left(x-3\right)
ដាក់ជាកត្តាលក្ខណៈធម្មតា x-11 ដោយប្រើលក្ខណៈបំបែក។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}