រំលងទៅមាតិកាមេ
ដាក់ជាកត្តា
Tick mark Image
វាយតម្លៃ
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

a+b=-12 ab=1\times 11=11
ដាក់ជាកត្តានូវកន្សោម​ដោយដាក់ជាក្រុម។ ដំបូង​ កន្សោម​ត្រូវតែសរសេរឡើងវិញជា x^{2}+ax+bx+11។ ដើម្បីរក a និង b សូមបង្កើត​ប្រព័ន្ធដែល​ត្រូវដោះស្រាយ។
a=-11 b=-1
ដោយសារ ab ជាចំនួនវិជ្ជមាន a និង b មានសញ្ញាដូចគ្នា។ ដោយសារ a+b ជាចំនួនអវិជ្ជមាន a ហើយ b ជាចំនួនអវិជ្ជមានទាំងពីរ។ មានតែគូដូច្នេះប៉ុណ្ណោះគឺជាចម្លើយរបស់ប្រព័ន្ធ។
\left(x^{2}-11x\right)+\left(-x+11\right)
សរសេរ x^{2}-12x+11 ឡើងវិញជា \left(x^{2}-11x\right)+\left(-x+11\right)។
x\left(x-11\right)-\left(x-11\right)
ដាក់ជាកត្តា x នៅក្នុងក្រុមទីមួយ និង -1 ក្រុមទីពីរចេញ។
\left(x-11\right)\left(x-1\right)
ដាក់ជាកត្តាលក្ខណៈធម្មតា x-11 ដោយប្រើលក្ខណៈបំបែក។
x^{2}-12x+11=0
ពហុធាកាដ្រាទីកអាចត្រូវបានដាក់ជាកត្តាដោយប្រើការបម្លែង ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ដែល x_{1} និង x_{2} គឺជា​ចម្លើយនៃ​សមីការរកាដ្រាទីក ax^{2}+bx+c=0។
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 11}}{2}
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយការប្រើរូបមន្តកាដ្រាទីក៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ រូបមន្តកាដ្រាទីកផ្ដល់នូវចម្លើយពីរ ចម្លើយមួយគឺនៅពេល ± ជាផលបូក និងចម្លើយមួយទៀតនៅពេលវាជាផលដក។
x=\frac{-\left(-12\right)±\sqrt{144-4\times 11}}{2}
ការ៉េ -12។
x=\frac{-\left(-12\right)±\sqrt{144-44}}{2}
គុណ -4 ដង 11។
x=\frac{-\left(-12\right)±\sqrt{100}}{2}
បូក 144 ជាមួយ -44។
x=\frac{-\left(-12\right)±10}{2}
យកឬសការ៉េនៃ 100។
x=\frac{12±10}{2}
ភាពផ្ទុយគ្នានៃ -12 គឺ 12។
x=\frac{22}{2}
ឥឡូវដោះស្រាយសមីការរ x=\frac{12±10}{2} នៅពេល ± គឺជាសញ្ញាបូក។ បូក 12 ជាមួយ 10។
x=11
ចែក 22 នឹង 2។
x=\frac{2}{2}
ឥឡូវដោះស្រាយសមីការរ x=\frac{12±10}{2} នៅពេល ± គឺជាសញ្ញាដក។ ដក 10 ពី 12។
x=1
ចែក 2 នឹង 2។
x^{2}-12x+11=\left(x-11\right)\left(x-1\right)
ដាក់កន្សោមដើមដាក់ជាកត្តា​ដោយប្រើ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)។ ជំនួស 11 សម្រាប់ x_{1} និង 1 សម្រាប់ x_{2}។