រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

x^{2}+8x-48=0
ដក 48 ពីជ្រុងទាំងពីរ។
a+b=8 ab=-48
ដើម្បីដោះស្រាយសមីការ សូមដាក់ជាកត្តា x^{2}+8x-48 ដោយប្រើរូបមន្ដ x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right)។ ដើម្បីរក a និង b សូមបង្កើត​ប្រព័ន្ធដែល​ត្រូវដោះស្រាយ។
-1,48 -2,24 -3,16 -4,12 -6,8
ដោយសារ ab ជាចំនួនអវិជ្ជមាន a និង b មានសញ្ញាផ្ទុយគ្នា។ ដោយសារ a+b ជាចំនួនវិជ្ជមាន ចំនួនវិជ្ជមានមានតម្លៃដាច់ខាតធំជាង​ចំនួនអវិជ្ជមាន។ រាយ​ឈ្មោះគូ​ទាំងអស់ដែល​ផ្ដល់នូវផលគុណ -48។
-1+48=47 -2+24=22 -3+16=13 -4+12=8 -6+8=2
គណនី​ផល​បូកសម្រាប់គូនីមួយៗ។
a=-4 b=12
ចម្លើយគឺជា​គូ ដែលផ្ដល់​នូវផលបូក 8 ។
\left(x-4\right)\left(x+12\right)
សរសេរកន្សោមដែលបានដាក់ជាកត្តា \left(x+a\right)\left(x+b\right) ដោយប្រើតម្លៃដែលទទួលបាន។
x=4 x=-12
ដើម្បីរកចម្លើយសមីការរ សូមដោះស្រាយ x-4=0 និង x+12=0។
x^{2}+8x-48=0
ដក 48 ពីជ្រុងទាំងពីរ។
a+b=8 ab=1\left(-48\right)=-48
ដើម្បីដោះស្រាយ​សមីការ សូមដាក់ផ្នែកខាងឆ្វេង​ដាក់ជាកត្តា​ដោយការដាក់ជាក្រុម។ ដំបូង ផ្នែកខាងឆ្វេងត្រូវតែសរសេរឡើងវិញជា x^{2}+ax+bx-48។ ដើម្បីរក a និង b សូមបង្កើត​ប្រព័ន្ធដែល​ត្រូវដោះស្រាយ។
-1,48 -2,24 -3,16 -4,12 -6,8
ដោយសារ ab ជាចំនួនអវិជ្ជមាន a និង b មានសញ្ញាផ្ទុយគ្នា។ ដោយសារ a+b ជាចំនួនវិជ្ជមាន ចំនួនវិជ្ជមានមានតម្លៃដាច់ខាតធំជាង​ចំនួនអវិជ្ជមាន។ រាយ​ឈ្មោះគូ​ទាំងអស់ដែល​ផ្ដល់នូវផលគុណ -48។
-1+48=47 -2+24=22 -3+16=13 -4+12=8 -6+8=2
គណនី​ផល​បូកសម្រាប់គូនីមួយៗ។
a=-4 b=12
ចម្លើយគឺជា​គូ ដែលផ្ដល់​នូវផលបូក 8 ។
\left(x^{2}-4x\right)+\left(12x-48\right)
សរសេរ x^{2}+8x-48 ឡើងវិញជា \left(x^{2}-4x\right)+\left(12x-48\right)។
x\left(x-4\right)+12\left(x-4\right)
ដាក់ជាកត្តា x នៅក្នុងក្រុមទីមួយ និង 12 ក្រុមទីពីរចេញ។
\left(x-4\right)\left(x+12\right)
ដាក់ជាកត្តាលក្ខណៈធម្មតា x-4 ដោយប្រើលក្ខណៈបំបែក។
x=4 x=-12
ដើម្បីរកចម្លើយសមីការរ សូមដោះស្រាយ x-4=0 និង x+12=0។
x^{2}+8x=48
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយការប្រើរូបមន្តកាដ្រាទីក៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ រូបមន្តកាដ្រាទីកផ្ដល់នូវចម្លើយពីរ ចម្លើយមួយគឺនៅពេល ± ជាផលបូក និងចម្លើយមួយទៀតនៅពេលវាជាផលដក។
x^{2}+8x-48=48-48
ដក 48 ពីជ្រុងទាំងពីរនៃសមីការរ។
x^{2}+8x-48=0
ការដក 48 ពីខ្លួនឯងនៅសល់ 0។
x=\frac{-8±\sqrt{8^{2}-4\left(-48\right)}}{2}
សមីការរនេះមានទម្រង់ស្ដង់ដារ៖ ax^{2}+bx+c=0។ ជំនួស 1 សម្រាប់ a, 8 សម្រាប់ b និង -48 សម្រាប់ c នៅក្នុងរូបមន្តកាដ្រាទីក, \frac{-b±\sqrt{b^{2}-4ac}}{2a}។
x=\frac{-8±\sqrt{64-4\left(-48\right)}}{2}
ការ៉េ 8។
x=\frac{-8±\sqrt{64+192}}{2}
គុណ -4 ដង -48។
x=\frac{-8±\sqrt{256}}{2}
បូក 64 ជាមួយ 192។
x=\frac{-8±16}{2}
យកឬសការ៉េនៃ 256។
x=\frac{8}{2}
ឥឡូវដោះស្រាយសមីការរ x=\frac{-8±16}{2} នៅពេល ± គឺជាសញ្ញាបូក។ បូក -8 ជាមួយ 16។
x=4
ចែក 8 នឹង 2។
x=-\frac{24}{2}
ឥឡូវដោះស្រាយសមីការរ x=\frac{-8±16}{2} នៅពេល ± គឺជាសញ្ញាដក។ ដក 16 ពី -8។
x=-12
ចែក -24 នឹង 2។
x=4 x=-12
សមីការរឥឡូវនេះត្រូវបានដោះស្រាយ។
x^{2}+8x=48
សមីការរកាដ្រាទីកដូចសមីការរមួយនេះអាចត្រូវបានដោះស្រាយដោយ​ការបំពេញការ៉េ សមីការរត្រូវតែដំបូងស្ថិតនៅក្នុងទម្រង់ x^{2}+bx=c។
x^{2}+8x+4^{2}=48+4^{2}
ចែក 8 ដែលជាមេគុណនៃតួ x នឹង 2 ដើម្បីបាន 4។ បន្ទាប់មក​បូកការ៉េនៃ 4 ជាមួយ​ជ្រុងទាំងពីរនៃសមីការរ។ ជំហាននេះធ្វើឲ្យជ្រុងខាងឆ្វេងនៃសមីការរក្លាយជាការេប្រាកដមួយ។
x^{2}+8x+16=48+16
ការ៉េ 4។
x^{2}+8x+16=64
បូក 48 ជាមួយ 16។
\left(x+4\right)^{2}=64
ដាក់ជាកត្តា x^{2}+8x+16 ។ ជាទូទៅ នៅពេល x^{2}+bx+c គឺជាការ៉េប្រាកដ វាតែងតែអាចត្រូវបានដាក់ជាកត្តាជា \left(x+\frac{b}{2}\right)^{2}។
\sqrt{\left(x+4\right)^{2}}=\sqrt{64}
យក​ឬសការ៉េនៃជ្រុងទាំងពីរនៃសមីការ។
x+4=8 x+4=-8
ផ្ទៀងផ្ទាត់។
x=4 x=-12
ដក 4 ពីជ្រុងទាំងពីរនៃសមីការរ។