ដោះស្រាយសម្រាប់ x
x=-8
x=-4
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
a+b=12 ab=32
ដើម្បីដោះស្រាយសមីការ សូមដាក់ជាកត្តា x^{2}+12x+32 ដោយប្រើរូបមន្ដ x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right)។ ដើម្បីរក a និង b សូមបង្កើតប្រព័ន្ធដែលត្រូវដោះស្រាយ។
1,32 2,16 4,8
ដោយសារ ab ជាចំនួនវិជ្ជមាន a និង b មានសញ្ញាដូចគ្នា។ ដោយសារ a+b ជាចំនួនវិជ្ជមាន a ហើយ b ជាចំនួនវិជ្ជមានទាំងពីរ។ រាយឈ្មោះគូទាំងអស់ដែលផ្ដល់នូវផលគុណ 32។
1+32=33 2+16=18 4+8=12
គណនីផលបូកសម្រាប់គូនីមួយៗ។
a=4 b=8
ចម្លើយគឺជាគូ ដែលផ្ដល់នូវផលបូក 12 ។
\left(x+4\right)\left(x+8\right)
សរសេរកន្សោមដែលបានដាក់ជាកត្តា \left(x+a\right)\left(x+b\right) ដោយប្រើតម្លៃដែលទទួលបាន។
x=-4 x=-8
ដើម្បីរកចម្លើយសមីការរ សូមដោះស្រាយ x+4=0 និង x+8=0។
a+b=12 ab=1\times 32=32
ដើម្បីដោះស្រាយសមីការ សូមដាក់ផ្នែកខាងឆ្វេងដាក់ជាកត្តាដោយការដាក់ជាក្រុម។ ដំបូង ផ្នែកខាងឆ្វេងត្រូវតែសរសេរឡើងវិញជា x^{2}+ax+bx+32។ ដើម្បីរក a និង b សូមបង្កើតប្រព័ន្ធដែលត្រូវដោះស្រាយ។
1,32 2,16 4,8
ដោយសារ ab ជាចំនួនវិជ្ជមាន a និង b មានសញ្ញាដូចគ្នា។ ដោយសារ a+b ជាចំនួនវិជ្ជមាន a ហើយ b ជាចំនួនវិជ្ជមានទាំងពីរ។ រាយឈ្មោះគូទាំងអស់ដែលផ្ដល់នូវផលគុណ 32។
1+32=33 2+16=18 4+8=12
គណនីផលបូកសម្រាប់គូនីមួយៗ។
a=4 b=8
ចម្លើយគឺជាគូ ដែលផ្ដល់នូវផលបូក 12 ។
\left(x^{2}+4x\right)+\left(8x+32\right)
សរសេរ x^{2}+12x+32 ឡើងវិញជា \left(x^{2}+4x\right)+\left(8x+32\right)។
x\left(x+4\right)+8\left(x+4\right)
ដាក់ជាកត្តា x នៅក្នុងក្រុមទីមួយ និង 8 ក្រុមទីពីរចេញ។
\left(x+4\right)\left(x+8\right)
ដាក់ជាកត្តាលក្ខណៈធម្មតា x+4 ដោយប្រើលក្ខណៈបំបែក។
x=-4 x=-8
ដើម្បីរកចម្លើយសមីការរ សូមដោះស្រាយ x+4=0 និង x+8=0។
x^{2}+12x+32=0
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយការប្រើរូបមន្តកាដ្រាទីក៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ រូបមន្តកាដ្រាទីកផ្ដល់នូវចម្លើយពីរ ចម្លើយមួយគឺនៅពេល ± ជាផលបូក និងចម្លើយមួយទៀតនៅពេលវាជាផលដក។
x=\frac{-12±\sqrt{12^{2}-4\times 32}}{2}
សមីការរនេះមានទម្រង់ស្ដង់ដារ៖ ax^{2}+bx+c=0។ ជំនួស 1 សម្រាប់ a, 12 សម្រាប់ b និង 32 សម្រាប់ c នៅក្នុងរូបមន្តកាដ្រាទីក, \frac{-b±\sqrt{b^{2}-4ac}}{2a}។
x=\frac{-12±\sqrt{144-4\times 32}}{2}
ការ៉េ 12។
x=\frac{-12±\sqrt{144-128}}{2}
គុណ -4 ដង 32។
x=\frac{-12±\sqrt{16}}{2}
បូក 144 ជាមួយ -128។
x=\frac{-12±4}{2}
យកឬសការ៉េនៃ 16។
x=-\frac{8}{2}
ឥឡូវដោះស្រាយសមីការរ x=\frac{-12±4}{2} នៅពេល ± គឺជាសញ្ញាបូក។ បូក -12 ជាមួយ 4។
x=-4
ចែក -8 នឹង 2។
x=-\frac{16}{2}
ឥឡូវដោះស្រាយសមីការរ x=\frac{-12±4}{2} នៅពេល ± គឺជាសញ្ញាដក។ ដក 4 ពី -12។
x=-8
ចែក -16 នឹង 2។
x=-4 x=-8
សមីការរឥឡូវនេះត្រូវបានដោះស្រាយ។
x^{2}+12x+32=0
សមីការរកាដ្រាទីកដូចសមីការរមួយនេះអាចត្រូវបានដោះស្រាយដោយការបំពេញការ៉េ សមីការរត្រូវតែដំបូងស្ថិតនៅក្នុងទម្រង់ x^{2}+bx=c។
x^{2}+12x+32-32=-32
ដក 32 ពីជ្រុងទាំងពីរនៃសមីការរ។
x^{2}+12x=-32
ការដក 32 ពីខ្លួនឯងនៅសល់ 0។
x^{2}+12x+6^{2}=-32+6^{2}
ចែក 12 ដែលជាមេគុណនៃតួ x នឹង 2 ដើម្បីបាន 6។ បន្ទាប់មកបូកការ៉េនៃ 6 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។ ជំហាននេះធ្វើឲ្យជ្រុងខាងឆ្វេងនៃសមីការរក្លាយជាការេប្រាកដមួយ។
x^{2}+12x+36=-32+36
ការ៉េ 6។
x^{2}+12x+36=4
បូក -32 ជាមួយ 36។
\left(x+6\right)^{2}=4
ដាក់ជាកត្តា x^{2}+12x+36 ។ ជាទូទៅ នៅពេល x^{2}+bx+c គឺជាការ៉េប្រាកដ វាតែងតែអាចត្រូវបានដាក់ជាកត្តាជា \left(x+\frac{b}{2}\right)^{2}។
\sqrt{\left(x+6\right)^{2}}=\sqrt{4}
យកឬសការ៉េនៃជ្រុងទាំងពីរនៃសមីការ។
x+6=2 x+6=-2
ផ្ទៀងផ្ទាត់។
x=-4 x=-8
ដក 6 ពីជ្រុងទាំងពីរនៃសមីការរ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}