រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

x^{2}+100x+2500=0
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយការប្រើរូបមន្តកាដ្រាទីក៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ រូបមន្តកាដ្រាទីកផ្ដល់នូវចម្លើយពីរ ចម្លើយមួយគឺនៅពេល ± ជាផលបូក និងចម្លើយមួយទៀតនៅពេលវាជាផលដក។
x=\frac{-100±\sqrt{100^{2}-4\times 2500}}{2}
សមីការរនេះមានទម្រង់ស្ដង់ដារ៖ ax^{2}+bx+c=0។ ជំនួស 1 សម្រាប់ a, 100 សម្រាប់ b និង 2500 សម្រាប់ c នៅក្នុងរូបមន្តកាដ្រាទីក, \frac{-b±\sqrt{b^{2}-4ac}}{2a}។
x=\frac{-100±\sqrt{10000-4\times 2500}}{2}
ការ៉េ 100។
x=\frac{-100±\sqrt{10000-10000}}{2}
គុណ -4 ដង 2500។
x=\frac{-100±\sqrt{0}}{2}
បូក 10000 ជាមួយ -10000។
x=-\frac{100}{2}
យកឬសការ៉េនៃ 0។
x=-50
ចែក -100 នឹង 2។
\left(x+50\right)^{2}=0
ដាក់ជាកត្តា x^{2}+100x+2500 ។ ជាទូទៅ នៅពេល x^{2}+bx+c គឺជាការ៉េប្រាកដ វាតែងតែអាចត្រូវបានដាក់ជាកត្តាជា \left(x+\frac{b}{2}\right)^{2}។
\sqrt{\left(x+50\right)^{2}}=\sqrt{0}
យក​ឬសការ៉េនៃជ្រុងទាំងពីរនៃសមីការ។
x+50=0 x+50=0
ផ្ទៀងផ្ទាត់។
x=-50 x=-50
ដក 50 ពីជ្រុងទាំងពីរនៃសមីការរ។
x=-50
សមីការរឥឡូវនេះត្រូវបានដោះស្រាយ។ ចម្លើយគឺដូចគ្នា។