ដោះស្រាយសម្រាប់ x_5
x_{5}=\frac{4x-2\sqrt{2}-29}{25}
x\neq 0\text{ and }x\neq -\frac{17}{4}
ដោះស្រាយសម្រាប់ x (complex solution)
x=\frac{25x_{5}}{4}+\frac{\sqrt{2}}{2}+\frac{29}{4}
x_{5}\neq \frac{-2\sqrt{2}-29}{25}\text{ and }x_{5}\neq \frac{-2\sqrt{2}-46}{25}\text{ and }x_{5}\neq \frac{-2\sqrt{2}-29}{25}
ដោះស្រាយសម្រាប់ x
x=\frac{25x_{5}}{4}+\frac{\sqrt{2}}{2}+\frac{29}{4}
x_{5}\neq \frac{-2\sqrt{2}-29}{25}\text{ and }x_{5}\neq \frac{-2\sqrt{2}-46}{25}
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
\left(4x+17\right)x^{0}=30+4^{2}+1\sqrt{8}+5^{2}x_{5}
ធ្វើប្រមាណវិធីគុណជ្រុងទាំងពីរនៃសមីការរដោយ 4x+17។
4xx^{0}+17x^{0}=30+4^{2}+1\sqrt{8}+5^{2}x_{5}
ប្រើលក្ខណៈបំបែកដើម្បីគុណ 4x+17 នឹង x^{0}។
4x^{1}+17x^{0}=30+4^{2}+1\sqrt{8}+5^{2}x_{5}
ដើម្បីគុណស្វ័យគុណនៃគោលដូចគ្នា ត្រូវបូកនិទស្សន្តរបស់ពួកវា។ បូក 1 និង 0 ដើម្បីទទួលបាន 1។
4x+17x^{0}=30+4^{2}+1\sqrt{8}+5^{2}x_{5}
គណនាស្វ័យគុណ x នៃ 1 ហើយបាន x។
4x+17x^{0}=30+16+1\sqrt{8}+5^{2}x_{5}
គណនាស្វ័យគុណ 4 នៃ 2 ហើយបាន 16។
4x+17x^{0}=46+1\sqrt{8}+5^{2}x_{5}
បូក 30 និង 16 ដើម្បីបាន 46។
4x+17x^{0}=46+1\times 2\sqrt{2}+5^{2}x_{5}
ដាក់ជាកត្តា 8=2^{2}\times 2។ សរសេរឡើងវិញនូវឬសការេនៃផលគុណ \sqrt{2^{2}\times 2} ជាផលគុណនៃឬសការេ \sqrt{2^{2}}\sqrt{2}។ យកឬសការ៉េនៃ 2^{2}។
4x+17x^{0}=46+2\sqrt{2}+5^{2}x_{5}
គុណ 1 និង 2 ដើម្បីបាន 2។
4x+17x^{0}=46+2\sqrt{2}+25x_{5}
គណនាស្វ័យគុណ 5 នៃ 2 ហើយបាន 25។
46+2\sqrt{2}+25x_{5}=4x+17x^{0}
ប្ដូរផ្នែកទាំងពីរ ដើម្បីឲ្យតួអថេរទាំងអស់ស្ថិតនៅផ្នែកខាងឆ្វេង។
2\sqrt{2}+25x_{5}=4x+17x^{0}-46
ដក 46 ពីជ្រុងទាំងពីរ។
25x_{5}=4x+17x^{0}-46-2\sqrt{2}
ដក 2\sqrt{2} ពីជ្រុងទាំងពីរ។
25x_{5}=4x-2\sqrt{2}-29
សមីការឥឡូវនេះស្ថិតនៅក្នុងទម្រង់ស្ដង់ដារ។
\frac{25x_{5}}{25}=\frac{4x-2\sqrt{2}-29}{25}
ចែកជ្រុងទាំងពីនឹង 25។
x_{5}=\frac{4x-2\sqrt{2}-29}{25}
ការចែកនឹង 25 មិនធ្វើប្រមាណវិធីគុណនឹង 25 ឡើងវិញ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}