ដោះស្រាយសម្រាប់ x
x = \frac{\sqrt{5} + 1}{2} \approx 1.618033989
x=\frac{1-\sqrt{5}}{2}\approx -0.618033989
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
x+1-x^{2}=0
ដក x^{2} ពីជ្រុងទាំងពីរ។
-x^{2}+x+1=0
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយការប្រើរូបមន្តកាដ្រាទីក៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ រូបមន្តកាដ្រាទីកផ្ដល់នូវចម្លើយពីរ ចម្លើយមួយគឺនៅពេល ± ជាផលបូក និងចម្លើយមួយទៀតនៅពេលវាជាផលដក។
x=\frac{-1±\sqrt{1^{2}-4\left(-1\right)}}{2\left(-1\right)}
សមីការរនេះមានទម្រង់ស្ដង់ដារ៖ ax^{2}+bx+c=0។ ជំនួស -1 សម្រាប់ a, 1 សម្រាប់ b និង 1 សម្រាប់ c នៅក្នុងរូបមន្តកាដ្រាទីក, \frac{-b±\sqrt{b^{2}-4ac}}{2a}។
x=\frac{-1±\sqrt{1-4\left(-1\right)}}{2\left(-1\right)}
ការ៉េ 1។
x=\frac{-1±\sqrt{1+4}}{2\left(-1\right)}
គុណ -4 ដង -1។
x=\frac{-1±\sqrt{5}}{2\left(-1\right)}
បូក 1 ជាមួយ 4។
x=\frac{-1±\sqrt{5}}{-2}
គុណ 2 ដង -1។
x=\frac{\sqrt{5}-1}{-2}
ឥឡូវដោះស្រាយសមីការរ x=\frac{-1±\sqrt{5}}{-2} នៅពេល ± គឺជាសញ្ញាបូក។ បូក -1 ជាមួយ \sqrt{5}។
x=\frac{1-\sqrt{5}}{2}
ចែក -1+\sqrt{5} នឹង -2។
x=\frac{-\sqrt{5}-1}{-2}
ឥឡូវដោះស្រាយសមីការរ x=\frac{-1±\sqrt{5}}{-2} នៅពេល ± គឺជាសញ្ញាដក។ ដក \sqrt{5} ពី -1។
x=\frac{\sqrt{5}+1}{2}
ចែក -1-\sqrt{5} នឹង -2។
x=\frac{1-\sqrt{5}}{2} x=\frac{\sqrt{5}+1}{2}
សមីការរឥឡូវនេះត្រូវបានដោះស្រាយ។
x+1-x^{2}=0
ដក x^{2} ពីជ្រុងទាំងពីរ។
x-x^{2}=-1
ដក 1 ពីជ្រុងទាំងពីរ។ អ្វីមួយដកសូន្យបានលទ្ធផលបដិសេធខ្លួនឯង។
-x^{2}+x=-1
សមីការរកាដ្រាទីកដូចសមីការរមួយនេះអាចត្រូវបានដោះស្រាយដោយការបំពេញការ៉េ សមីការរត្រូវតែដំបូងស្ថិតនៅក្នុងទម្រង់ x^{2}+bx=c។
\frac{-x^{2}+x}{-1}=-\frac{1}{-1}
ចែកជ្រុងទាំងពីនឹង -1។
x^{2}+\frac{1}{-1}x=-\frac{1}{-1}
ការចែកនឹង -1 មិនធ្វើប្រមាណវិធីគុណនឹង -1 ឡើងវិញ។
x^{2}-x=-\frac{1}{-1}
ចែក 1 នឹង -1។
x^{2}-x=1
ចែក -1 នឹង -1។
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=1+\left(-\frac{1}{2}\right)^{2}
ចែក -1 ដែលជាមេគុណនៃតួ x នឹង 2 ដើម្បីបាន -\frac{1}{2}។ បន្ទាប់មកបូកការ៉េនៃ -\frac{1}{2} ជាមួយជ្រុងទាំងពីរនៃសមីការរ។ ជំហាននេះធ្វើឲ្យជ្រុងខាងឆ្វេងនៃសមីការរក្លាយជាការេប្រាកដមួយ។
x^{2}-x+\frac{1}{4}=1+\frac{1}{4}
លើក -\frac{1}{2} ជាការ៉េដោយលើកជាការ៉េទាំងភាគយក និងភាគបែងនៃប្រភាគ។
x^{2}-x+\frac{1}{4}=\frac{5}{4}
បូក 1 ជាមួយ \frac{1}{4}។
\left(x-\frac{1}{2}\right)^{2}=\frac{5}{4}
ដាក់ជាកត្តា x^{2}-x+\frac{1}{4} ។ ជាទូទៅ នៅពេល x^{2}+bx+c គឺជាការ៉េប្រាកដ វាតែងតែអាចត្រូវបានដាក់ជាកត្តាជា \left(x+\frac{b}{2}\right)^{2}។
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{5}{4}}
យកឬសការ៉េនៃជ្រុងទាំងពីរនៃសមីការ។
x-\frac{1}{2}=\frac{\sqrt{5}}{2} x-\frac{1}{2}=-\frac{\sqrt{5}}{2}
ផ្ទៀងផ្ទាត់។
x=\frac{\sqrt{5}+1}{2} x=\frac{1-\sqrt{5}}{2}
បូក \frac{1}{2} ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}