ដាក់ជាកត្តា
\left(n+5\right)^{2}
វាយតម្លៃ
\left(n+5\right)^{2}
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
a+b=10 ab=1\times 25=25
ដាក់ជាកត្តានូវកន្សោមដោយដាក់ជាក្រុម។ ដំបូង កន្សោមត្រូវតែសរសេរឡើងវិញជា n^{2}+an+bn+25។ ដើម្បីរក a និង b សូមបង្កើតប្រព័ន្ធដែលត្រូវដោះស្រាយ។
1,25 5,5
ដោយសារ ab ជាចំនួនវិជ្ជមាន a និង b មានសញ្ញាដូចគ្នា។ ដោយសារ a+b ជាចំនួនវិជ្ជមាន a ហើយ b ជាចំនួនវិជ្ជមានទាំងពីរ។ រាយឈ្មោះគូទាំងអស់ដែលផ្ដល់នូវផលគុណ 25។
1+25=26 5+5=10
គណនីផលបូកសម្រាប់គូនីមួយៗ។
a=5 b=5
ចម្លើយគឺជាគូ ដែលផ្ដល់នូវផលបូក 10 ។
\left(n^{2}+5n\right)+\left(5n+25\right)
សរសេរ n^{2}+10n+25 ឡើងវិញជា \left(n^{2}+5n\right)+\left(5n+25\right)។
n\left(n+5\right)+5\left(n+5\right)
ដាក់ជាកត្តា n នៅក្នុងក្រុមទីមួយ និង 5 ក្រុមទីពីរចេញ។
\left(n+5\right)\left(n+5\right)
ដាក់ជាកត្តាលក្ខណៈធម្មតា n+5 ដោយប្រើលក្ខណៈបំបែក។
\left(n+5\right)^{2}
សរសេរឡើងវិញជាការ៉េទ្វេរធា។
factor(n^{2}+10n+25)
ត្រីធានេះមានទម្រង់នៃការ៉េ ប្រហែលជាត្រូវបានគុណនឹងកត្តារួម។ ការ៉េត្រីធាអាចត្រូវបានដាក់ជាកត្តាដោយការរកឬសការ៉េនៃតួនាំមុខ និងតួខាងចុង។
\sqrt{25}=5
រកឬសការ៉េនៃតួខាងចុង 25។
\left(n+5\right)^{2}
ការ៉េត្រីធាគឺជាការ៉េនៃទ្វេរធាដែលជាផលបូក ឬផលដកនៃឬសការ៉េនៃតួនាំមុខ ឬតួខាងចុងដែលមានសញ្ញាកំណត់ដោយសញ្ញាតួកណ្ដាលនៃការ៉េត្រីធា។
n^{2}+10n+25=0
ពហុធាកាដ្រាទីកអាចត្រូវបានដាក់ជាកត្តាដោយប្រើការបម្លែង ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ដែល x_{1} និង x_{2} គឺជាចម្លើយនៃសមីការរកាដ្រាទីក ax^{2}+bx+c=0។
n=\frac{-10±\sqrt{10^{2}-4\times 25}}{2}
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយការប្រើរូបមន្តកាដ្រាទីក៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ រូបមន្តកាដ្រាទីកផ្ដល់នូវចម្លើយពីរ ចម្លើយមួយគឺនៅពេល ± ជាផលបូក និងចម្លើយមួយទៀតនៅពេលវាជាផលដក។
n=\frac{-10±\sqrt{100-4\times 25}}{2}
ការ៉េ 10។
n=\frac{-10±\sqrt{100-100}}{2}
គុណ -4 ដង 25។
n=\frac{-10±\sqrt{0}}{2}
បូក 100 ជាមួយ -100។
n=\frac{-10±0}{2}
យកឬសការ៉េនៃ 0។
n^{2}+10n+25=\left(n-\left(-5\right)\right)\left(n-\left(-5\right)\right)
ដាក់កន្សោមដើមដាក់ជាកត្តាដោយប្រើ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)។ ជំនួស -5 សម្រាប់ x_{1} និង -5 សម្រាប់ x_{2}។
n^{2}+10n+25=\left(n+5\right)\left(n+5\right)
សម្រួលកន្សោមទាំងអស់នៃទម្រង់ p-\left(-q\right) ទៅ p+q។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}