ដាក់ជាកត្តា
m\left(m-10\right)\left(m-3\right)
វាយតម្លៃ
m\left(m-10\right)\left(m-3\right)
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
m\left(m^{2}-13m+30\right)
ដាក់ជាកត្តា m។
a+b=-13 ab=1\times 30=30
ពិនិត្យ m^{2}-13m+30។ ដាក់ជាកត្តានូវកន្សោមដោយដាក់ជាក្រុម។ ដំបូង កន្សោមត្រូវតែសរសេរឡើងវិញជា m^{2}+am+bm+30។ ដើម្បីរក a និង b សូមបង្កើតប្រព័ន្ធដែលត្រូវដោះស្រាយ។
-1,-30 -2,-15 -3,-10 -5,-6
ដោយសារ ab ជាចំនួនវិជ្ជមាន a និង b មានសញ្ញាដូចគ្នា។ ដោយសារ a+b ជាចំនួនអវិជ្ជមាន a ហើយ b ជាចំនួនអវិជ្ជមានទាំងពីរ។ រាយឈ្មោះគូទាំងអស់ដែលផ្ដល់នូវផលគុណ 30។
-1-30=-31 -2-15=-17 -3-10=-13 -5-6=-11
គណនីផលបូកសម្រាប់គូនីមួយៗ។
a=-10 b=-3
ចម្លើយគឺជាគូ ដែលផ្ដល់នូវផលបូក -13 ។
\left(m^{2}-10m\right)+\left(-3m+30\right)
សរសេរ m^{2}-13m+30 ឡើងវិញជា \left(m^{2}-10m\right)+\left(-3m+30\right)។
m\left(m-10\right)-3\left(m-10\right)
ដាក់ជាកត្តា m នៅក្នុងក្រុមទីមួយ និង -3 ក្រុមទីពីរចេញ។
\left(m-10\right)\left(m-3\right)
ដាក់ជាកត្តាលក្ខណៈធម្មតា m-10 ដោយប្រើលក្ខណៈបំបែក។
m\left(m-10\right)\left(m-3\right)
សរសេរកន្សោមដែលបានដាក់ជាកត្តាពេញលេញឡើងវិញ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}