រំលងទៅមាតិកាមេ
ដាក់ជាកត្តា
Tick mark Image
វាយតម្លៃ
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

x\left(3x+4\right)
ដាក់ជាកត្តា x។
3x^{2}+4x=0
ពហុធាកាដ្រាទីកអាចត្រូវបានដាក់ជាកត្តាដោយប្រើការបម្លែង ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ដែល x_{1} និង x_{2} គឺជា​ចម្លើយនៃ​សមីការរកាដ្រាទីក ax^{2}+bx+c=0។
x=\frac{-4±\sqrt{4^{2}}}{2\times 3}
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយការប្រើរូបមន្តកាដ្រាទីក៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ រូបមន្តកាដ្រាទីកផ្ដល់នូវចម្លើយពីរ ចម្លើយមួយគឺនៅពេល ± ជាផលបូក និងចម្លើយមួយទៀតនៅពេលវាជាផលដក។
x=\frac{-4±4}{2\times 3}
យកឬសការ៉េនៃ 4^{2}។
x=\frac{-4±4}{6}
គុណ 2 ដង 3។
x=\frac{0}{6}
ឥឡូវដោះស្រាយសមីការរ x=\frac{-4±4}{6} នៅពេល ± គឺជាសញ្ញាបូក។ បូក -4 ជាមួយ 4។
x=0
ចែក 0 នឹង 6។
x=-\frac{8}{6}
ឥឡូវដោះស្រាយសមីការរ x=\frac{-4±4}{6} នៅពេល ± គឺជាសញ្ញាដក។ ដក 4 ពី -4។
x=-\frac{4}{3}
កាត់បន្ថយប្រភាគ \frac{-8}{6} ទៅតួដែលតូចបំផុតដោយ​ដក និងលុបចេញ 2។
3x^{2}+4x=3x\left(x-\left(-\frac{4}{3}\right)\right)
ដាក់កន្សោមដើមដាក់ជាកត្តា​ដោយប្រើ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)។ ជំនួស 0 សម្រាប់ x_{1} និង -\frac{4}{3} សម្រាប់ x_{2}។
3x^{2}+4x=3x\left(x+\frac{4}{3}\right)
សម្រួលកន្សោមទាំងអស់នៃទម្រង់ p-\left(-q\right) ទៅ p+q។
3x^{2}+4x=3x\times \frac{3x+4}{3}
បូក \frac{4}{3} ជាមួយ x ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មក​បន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
3x^{2}+4x=x\left(3x+4\right)
សម្រួល 3 ដែលជាកត្តារួមធំបំផុតរវាង 3 និង 3។