រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

2x^{2}+x-1=0
ដក 1 ពីជ្រុងទាំងពីរ។
a+b=1 ab=2\left(-1\right)=-2
ដើម្បីដោះស្រាយ​សមីការ សូមដាក់ផ្នែកខាងឆ្វេង​ដាក់ជាកត្តា​ដោយការដាក់ជាក្រុម។ ដំបូង ផ្នែកខាងឆ្វេងត្រូវតែសរសេរឡើងវិញជា 2x^{2}+ax+bx-1។ ដើម្បីរក a និង b សូមបង្កើត​ប្រព័ន្ធដែល​ត្រូវដោះស្រាយ។
a=-1 b=2
ដោយសារ ab ជាចំនួនអវិជ្ជមាន a និង b មានសញ្ញាផ្ទុយគ្នា។ ដោយសារ a+b ជាចំនួនវិជ្ជមាន ចំនួនវិជ្ជមានមានតម្លៃដាច់ខាតធំជាង​ចំនួនអវិជ្ជមាន។ មានតែគូដូច្នេះប៉ុណ្ណោះគឺជាចម្លើយរបស់ប្រព័ន្ធ។
\left(2x^{2}-x\right)+\left(2x-1\right)
សរសេរ 2x^{2}+x-1 ឡើងវិញជា \left(2x^{2}-x\right)+\left(2x-1\right)។
x\left(2x-1\right)+2x-1
ដាក់ជាកត្តា x នៅក្នុង 2x^{2}-x។
\left(2x-1\right)\left(x+1\right)
ដាក់ជាកត្តាលក្ខណៈធម្មតា 2x-1 ដោយប្រើលក្ខណៈបំបែក។
x=\frac{1}{2} x=-1
ដើម្បីរកចម្លើយសមីការរ សូមដោះស្រាយ 2x-1=0 និង x+1=0។
2x^{2}+x=1
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយការប្រើរូបមន្តកាដ្រាទីក៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ រូបមន្តកាដ្រាទីកផ្ដល់នូវចម្លើយពីរ ចម្លើយមួយគឺនៅពេល ± ជាផលបូក និងចម្លើយមួយទៀតនៅពេលវាជាផលដក។
2x^{2}+x-1=1-1
ដក 1 ពីជ្រុងទាំងពីរនៃសមីការរ។
2x^{2}+x-1=0
ការដក 1 ពីខ្លួនឯងនៅសល់ 0។
x=\frac{-1±\sqrt{1^{2}-4\times 2\left(-1\right)}}{2\times 2}
សមីការរនេះមានទម្រង់ស្ដង់ដារ៖ ax^{2}+bx+c=0។ ជំនួស 2 សម្រាប់ a, 1 សម្រាប់ b និង -1 សម្រាប់ c នៅក្នុងរូបមន្តកាដ្រាទីក, \frac{-b±\sqrt{b^{2}-4ac}}{2a}។
x=\frac{-1±\sqrt{1-4\times 2\left(-1\right)}}{2\times 2}
ការ៉េ 1។
x=\frac{-1±\sqrt{1-8\left(-1\right)}}{2\times 2}
គុណ -4 ដង 2។
x=\frac{-1±\sqrt{1+8}}{2\times 2}
គុណ -8 ដង -1។
x=\frac{-1±\sqrt{9}}{2\times 2}
បូក 1 ជាមួយ 8។
x=\frac{-1±3}{2\times 2}
យកឬសការ៉េនៃ 9។
x=\frac{-1±3}{4}
គុណ 2 ដង 2។
x=\frac{2}{4}
ឥឡូវដោះស្រាយសមីការរ x=\frac{-1±3}{4} នៅពេល ± គឺជាសញ្ញាបូក។ បូក -1 ជាមួយ 3។
x=\frac{1}{2}
កាត់បន្ថយប្រភាគ \frac{2}{4} ទៅតួដែលតូចបំផុតដោយ​ដក និងលុបចេញ 2។
x=-\frac{4}{4}
ឥឡូវដោះស្រាយសមីការរ x=\frac{-1±3}{4} នៅពេល ± គឺជាសញ្ញាដក។ ដក 3 ពី -1។
x=-1
ចែក -4 នឹង 4។
x=\frac{1}{2} x=-1
សមីការរឥឡូវនេះត្រូវបានដោះស្រាយ។
2x^{2}+x=1
សមីការរកាដ្រាទីកដូចសមីការរមួយនេះអាចត្រូវបានដោះស្រាយដោយ​ការបំពេញការ៉េ សមីការរត្រូវតែដំបូងស្ថិតនៅក្នុងទម្រង់ x^{2}+bx=c។
\frac{2x^{2}+x}{2}=\frac{1}{2}
ចែកជ្រុងទាំងពីនឹង 2។
x^{2}+\frac{1}{2}x=\frac{1}{2}
ការចែកនឹង 2 មិនធ្វើប្រមាណវិធីគុណនឹង 2 ឡើងវិញ។
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=\frac{1}{2}+\left(\frac{1}{4}\right)^{2}
ចែក \frac{1}{2} ដែលជាមេគុណនៃតួ x នឹង 2 ដើម្បីបាន \frac{1}{4}។ បន្ទាប់មក​បូកការ៉េនៃ \frac{1}{4} ជាមួយ​ជ្រុងទាំងពីរនៃសមីការរ។ ជំហាននេះធ្វើឲ្យជ្រុងខាងឆ្វេងនៃសមីការរក្លាយជាការេប្រាកដមួយ។
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{1}{2}+\frac{1}{16}
លើក \frac{1}{4} ជាការ៉េដោយលើកជាការ៉េទាំងភាគយក និងភាគបែងនៃប្រភាគ។
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{9}{16}
បូក \frac{1}{2} ជាមួយ \frac{1}{16} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មក​បន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
\left(x+\frac{1}{4}\right)^{2}=\frac{9}{16}
ដាក់ជាកត្តា x^{2}+\frac{1}{2}x+\frac{1}{16} ។ ជាទូទៅ នៅពេល x^{2}+bx+c គឺជាការ៉េប្រាកដ វាតែងតែអាចត្រូវបានដាក់ជាកត្តាជា \left(x+\frac{b}{2}\right)^{2}។
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
យក​ឬសការ៉េនៃជ្រុងទាំងពីរនៃសមីការ។
x+\frac{1}{4}=\frac{3}{4} x+\frac{1}{4}=-\frac{3}{4}
ផ្ទៀងផ្ទាត់។
x=\frac{1}{2} x=-1
ដក \frac{1}{4} ពីជ្រុងទាំងពីរនៃសមីការរ។