ដោះស្រាយសម្រាប់ f
\left\{\begin{matrix}f=-\frac{1}{x-3}\text{, }&x\neq 3\\f\neq 0\text{, }&x=0\end{matrix}\right.
ដោះស្រាយសម្រាប់ x
x=3-\frac{1}{f}
x=0\text{, }f\neq 0
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
\frac{1}{f}x=-x^{2}+3x
តម្រៀបលំដាប់តួឡើងវិញ។
1x=-x^{2}f+3xf
អថេរ f មិនអាចស្មើនឹង 0 បានទេ ដោយសារការចែកនឹងសូន្យមិនត្រូវបានកំណត់។ ធ្វើប្រមាណវិធីគុណជ្រុងទាំងពីរនៃសមីការរដោយ f។
-x^{2}f+3xf=1x
ប្ដូរផ្នែកទាំងពីរ ដើម្បីឲ្យតួអថេរទាំងអស់ស្ថិតនៅផ្នែកខាងឆ្វេង។
-fx^{2}+3fx=x
តម្រៀបលំដាប់តួឡើងវិញ។
\left(-x^{2}+3x\right)f=x
បន្សំតួទាំងអស់ដែលមាន f។
\left(3x-x^{2}\right)f=x
សមីការឥឡូវនេះស្ថិតនៅក្នុងទម្រង់ស្ដង់ដារ។
\frac{\left(3x-x^{2}\right)f}{3x-x^{2}}=\frac{x}{3x-x^{2}}
ចែកជ្រុងទាំងពីនឹង 3x-x^{2}។
f=\frac{x}{3x-x^{2}}
ការចែកនឹង 3x-x^{2} មិនធ្វើប្រមាណវិធីគុណនឹង 3x-x^{2} ឡើងវិញ។
f=\frac{1}{3-x}
ចែក x នឹង 3x-x^{2}។
f=\frac{1}{3-x}\text{, }f\neq 0
អថេរ f មិនអាចស្មើនឹង 0 បានទេ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}