ដោះស្រាយសម្រាប់ x
x = \frac{\log_{e} {(3)} + 1}{2} \approx 1.049306144
ដោះស្រាយសម្រាប់ x (complex solution)
x=\frac{\ln(3)+1}{2}+i\pi n_{1}
n_{1}\in \mathrm{Z}
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
e^{2x-1}=3
ប្រើវិធាននិទស្សន្ត និងលោការីតដើម្បីដោះស្រាយសមីការ។
\log(e^{2x-1})=\log(3)
យកលោការីតនៃជ្រុងទាំងពីរនៃសមីការ។
\left(2x-1\right)\log(e)=\log(3)
លោការីតនៃចំនួនដែលត្រូវបានលើកជាស្វ័យគុណគឺជាចំនួនស្វ័យគុណគុណនឹងលោការីតនៃចំនួន។
2x-1=\frac{\log(3)}{\log(e)}
ចែកជ្រុងទាំងពីនឹង \log(e)។
2x-1=\log_{e}\left(3\right)
តាមរយៈរូមមន្តបម្រែបម្រួលគោល \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right)។
2x=\ln(3)-\left(-1\right)
បូក 1 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{\ln(3)+1}{2}
ចែកជ្រុងទាំងពីនឹង 2។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}