d u = 2 x + 3
ដោះស្រាយសម្រាប់ d (complex solution)
\left\{\begin{matrix}d=\frac{2x+3}{u}\text{, }&u\neq 0\\d\in \mathrm{C}\text{, }&x=-\frac{3}{2}\text{ and }u=0\end{matrix}\right.
ដោះស្រាយសម្រាប់ u (complex solution)
\left\{\begin{matrix}u=\frac{2x+3}{d}\text{, }&d\neq 0\\u\in \mathrm{C}\text{, }&x=-\frac{3}{2}\text{ and }d=0\end{matrix}\right.
ដោះស្រាយសម្រាប់ d
\left\{\begin{matrix}d=\frac{2x+3}{u}\text{, }&u\neq 0\\d\in \mathrm{R}\text{, }&x=-\frac{3}{2}\text{ and }u=0\end{matrix}\right.
ដោះស្រាយសម្រាប់ u
\left\{\begin{matrix}u=\frac{2x+3}{d}\text{, }&d\neq 0\\u\in \mathrm{R}\text{, }&x=-\frac{3}{2}\text{ and }d=0\end{matrix}\right.
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
ud=2x+3
សមីការឥឡូវនេះស្ថិតនៅក្នុងទម្រង់ស្ដង់ដារ។
\frac{ud}{u}=\frac{2x+3}{u}
ចែកជ្រុងទាំងពីនឹង u។
d=\frac{2x+3}{u}
ការចែកនឹង u មិនធ្វើប្រមាណវិធីគុណនឹង u ឡើងវិញ។
du=2x+3
សមីការឥឡូវនេះស្ថិតនៅក្នុងទម្រង់ស្ដង់ដារ។
\frac{du}{d}=\frac{2x+3}{d}
ចែកជ្រុងទាំងពីនឹង d។
u=\frac{2x+3}{d}
ការចែកនឹង d មិនធ្វើប្រមាណវិធីគុណនឹង d ឡើងវិញ។
ud=2x+3
សមីការឥឡូវនេះស្ថិតនៅក្នុងទម្រង់ស្ដង់ដារ។
\frac{ud}{u}=\frac{2x+3}{u}
ចែកជ្រុងទាំងពីនឹង u។
d=\frac{2x+3}{u}
ការចែកនឹង u មិនធ្វើប្រមាណវិធីគុណនឹង u ឡើងវិញ។
du=2x+3
សមីការឥឡូវនេះស្ថិតនៅក្នុងទម្រង់ស្ដង់ដារ។
\frac{du}{d}=\frac{2x+3}{d}
ចែកជ្រុងទាំងពីនឹង d។
u=\frac{2x+3}{d}
ការចែកនឹង d មិនធ្វើប្រមាណវិធីគុណនឹង d ឡើងវិញ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}