ដាក់ជាកត្តា
a\left(x-2\right)\left(x+6\right)
វាយតម្លៃ
a\left(x-2\right)\left(x+6\right)
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
a\left(x^{2}+4x-12\right)
ដាក់ជាកត្តា a។
p+q=4 pq=1\left(-12\right)=-12
ពិនិត្យ x^{2}+4x-12។ ដាក់ជាកត្តានូវកន្សោមដោយដាក់ជាក្រុម។ ដំបូង កន្សោមត្រូវតែសរសេរឡើងវិញជា x^{2}+px+qx-12។ ដើម្បីរក p និង q សូមបង្កើតប្រព័ន្ធដែលត្រូវដោះស្រាយ។
-1,12 -2,6 -3,4
ដោយសារ pq ជាចំនួនអវិជ្ជមាន p និង q មានសញ្ញាផ្ទុយគ្នា។ ដោយសារ p+q ជាចំនួនវិជ្ជមាន ចំនួនវិជ្ជមានមានតម្លៃដាច់ខាតធំជាងចំនួនអវិជ្ជមាន។ រាយឈ្មោះគូទាំងអស់ដែលផ្ដល់នូវផលគុណ -12។
-1+12=11 -2+6=4 -3+4=1
គណនីផលបូកសម្រាប់គូនីមួយៗ។
p=-2 q=6
ចម្លើយគឺជាគូ ដែលផ្ដល់នូវផលបូក 4 ។
\left(x^{2}-2x\right)+\left(6x-12\right)
សរសេរ x^{2}+4x-12 ឡើងវិញជា \left(x^{2}-2x\right)+\left(6x-12\right)។
x\left(x-2\right)+6\left(x-2\right)
ដាក់ជាកត្តា x នៅក្នុងក្រុមទីមួយ និង 6 ក្រុមទីពីរចេញ។
\left(x-2\right)\left(x+6\right)
ដាក់ជាកត្តាលក្ខណៈធម្មតា x-2 ដោយប្រើលក្ខណៈបំបែក។
a\left(x-2\right)\left(x+6\right)
សរសេរកន្សោមដែលបានដាក់ជាកត្តាពេញលេញឡើងវិញ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}