រំលងទៅមាតិកាមេ
ដាក់ជាកត្តា
Tick mark Image
វាយតម្លៃ
Tick mark Image

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

a^{5}-6a^{4}+16a^{3}-32a^{2}+48a-32=0
ដើម្បីដាក់ជាកត្តានូវកន្សោម ចូរដោះស្រាយសមីការ ដែលកន្សោម​ស្មើនឹង 0។
±32,±16,±8,±4,±2,±1
តាមទ្រឹស្ដីបទឬសសនិទាន គ្រប់ឬសសនិទានទាំងអស់នៃពហុធាគឺមានទម្រង់ \frac{p}{q} ដែល​ p ចែកតួថេរ -32 ហើយ q ចែកមេគុណនាំមុខ 1។ រាយឈ្មោះបេក្ខជនទាំងអស់ \frac{p}{q}។
a=2
រកឫសគល់បែបនេះដោយសាកល្បងតម្លៃចំនួនគត់ទាំងអស់ដោយចាប់ផ្តើមពីតូចបំផុតដោយតម្លៃដាច់ខាត។ ប្រសិនបើរកមិនឃើញឫសចំនួនគត់សូមសាកល្បងប្រភាគ។
a^{4}-4a^{3}+8a^{2}-16a+16=0
ទ្រឹស្ដីបទនៃផលគុណកត្តា a-k គឺជាកត្តានៃ​ពហុធាសម្រាប់ k ឬសនីមួយៗ។ ចែក a^{5}-6a^{4}+16a^{3}-32a^{2}+48a-32 នឹង a-2 ដើម្បីបានa^{4}-4a^{3}+8a^{2}-16a+16។ ដើម្បីដាក់លទ្ធផលជាកត្តា ចូរដោះស្រាយសមីការ ដែលមានលទ្ធផល​ស្មើនឹង 0។
±16,±8,±4,±2,±1
តាមទ្រឹស្ដីបទឬសសនិទាន គ្រប់ឬសសនិទានទាំងអស់នៃពហុធាគឺមានទម្រង់ \frac{p}{q} ដែល​ p ចែកតួថេរ 16 ហើយ q ចែកមេគុណនាំមុខ 1។ រាយឈ្មោះបេក្ខជនទាំងអស់ \frac{p}{q}។
a=2
រកឫសគល់បែបនេះដោយសាកល្បងតម្លៃចំនួនគត់ទាំងអស់ដោយចាប់ផ្តើមពីតូចបំផុតដោយតម្លៃដាច់ខាត។ ប្រសិនបើរកមិនឃើញឫសចំនួនគត់សូមសាកល្បងប្រភាគ។
a^{3}-2a^{2}+4a-8=0
ទ្រឹស្ដីបទនៃផលគុណកត្តា a-k គឺជាកត្តានៃ​ពហុធាសម្រាប់ k ឬសនីមួយៗ។ ចែក a^{4}-4a^{3}+8a^{2}-16a+16 នឹង a-2 ដើម្បីបានa^{3}-2a^{2}+4a-8។ ដើម្បីដាក់លទ្ធផលជាកត្តា ចូរដោះស្រាយសមីការ ដែលមានលទ្ធផល​ស្មើនឹង 0។
±8,±4,±2,±1
តាមទ្រឹស្ដីបទឬសសនិទាន គ្រប់ឬសសនិទានទាំងអស់នៃពហុធាគឺមានទម្រង់ \frac{p}{q} ដែល​ p ចែកតួថេរ -8 ហើយ q ចែកមេគុណនាំមុខ 1។ រាយឈ្មោះបេក្ខជនទាំងអស់ \frac{p}{q}។
a=2
រកឫសគល់បែបនេះដោយសាកល្បងតម្លៃចំនួនគត់ទាំងអស់ដោយចាប់ផ្តើមពីតូចបំផុតដោយតម្លៃដាច់ខាត។ ប្រសិនបើរកមិនឃើញឫសចំនួនគត់សូមសាកល្បងប្រភាគ។
a^{2}+4=0
ទ្រឹស្ដីបទនៃផលគុណកត្តា a-k គឺជាកត្តានៃ​ពហុធាសម្រាប់ k ឬសនីមួយៗ។ ចែក a^{3}-2a^{2}+4a-8 នឹង a-2 ដើម្បីបានa^{2}+4។ ដើម្បីដាក់លទ្ធផលជាកត្តា ចូរដោះស្រាយសមីការ ដែលមានលទ្ធផល​ស្មើនឹង 0។
a=\frac{0±\sqrt{0^{2}-4\times 1\times 4}}{2}
គ្រប់សមីការរ​ដែល​មានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយ​ដោយប្រើរូបមន្តដឺក្រេទីពីរ៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ ជំនួស 1 សម្រាប់ a, 0 សម្រាប់ b និង 4 សម្រាប់ c នៅក្នុងរូបមន្ដដឺក្រេទីពីរ។
a=\frac{0±\sqrt{-16}}{2}
ធ្វើការគណនា។
a^{2}+4
ពហុធា a^{2}+4 មិនត្រូវបានដាក់ជាកត្តាទេ ដោយសារវាមិនមានឬសសនិទានណាមួយទេ។
\left(a^{2}+4\right)\left(a-2\right)^{3}
សរសេរកន្សោមដែលបានដាក់ជាកត្តាដោយប្រើឬសដែលទទួលបាន។