រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ a (complex solution)
Tick mark Image
ដោះស្រាយសម្រាប់ a
Tick mark Image

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

a^{2}+8a+9=96
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយការប្រើរូបមន្តកាដ្រាទីក៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ រូបមន្តកាដ្រាទីកផ្ដល់នូវចម្លើយពីរ ចម្លើយមួយគឺនៅពេល ± ជាផលបូក និងចម្លើយមួយទៀតនៅពេលវាជាផលដក។
a^{2}+8a+9-96=96-96
ដក 96 ពីជ្រុងទាំងពីរនៃសមីការរ។
a^{2}+8a+9-96=0
ការដក 96 ពីខ្លួនឯងនៅសល់ 0។
a^{2}+8a-87=0
ដក 96 ពី 9។
a=\frac{-8±\sqrt{8^{2}-4\left(-87\right)}}{2}
សមីការរនេះមានទម្រង់ស្ដង់ដារ៖ ax^{2}+bx+c=0។ ជំនួស 1 សម្រាប់ a, 8 សម្រាប់ b និង -87 សម្រាប់ c នៅក្នុងរូបមន្តកាដ្រាទីក, \frac{-b±\sqrt{b^{2}-4ac}}{2a}។
a=\frac{-8±\sqrt{64-4\left(-87\right)}}{2}
ការ៉េ 8។
a=\frac{-8±\sqrt{64+348}}{2}
គុណ -4 ដង -87។
a=\frac{-8±\sqrt{412}}{2}
បូក 64 ជាមួយ 348។
a=\frac{-8±2\sqrt{103}}{2}
យកឬសការ៉េនៃ 412។
a=\frac{2\sqrt{103}-8}{2}
ឥឡូវដោះស្រាយសមីការរ a=\frac{-8±2\sqrt{103}}{2} នៅពេល ± គឺជាសញ្ញាបូក។ បូក -8 ជាមួយ 2\sqrt{103}។
a=\sqrt{103}-4
ចែក -8+2\sqrt{103} នឹង 2។
a=\frac{-2\sqrt{103}-8}{2}
ឥឡូវដោះស្រាយសមីការរ a=\frac{-8±2\sqrt{103}}{2} នៅពេល ± គឺជាសញ្ញាដក។ ដក 2\sqrt{103} ពី -8។
a=-\sqrt{103}-4
ចែក -8-2\sqrt{103} នឹង 2។
a=\sqrt{103}-4 a=-\sqrt{103}-4
សមីការរឥឡូវនេះត្រូវបានដោះស្រាយ។
a^{2}+8a+9=96
សមីការរកាដ្រាទីកដូចសមីការរមួយនេះអាចត្រូវបានដោះស្រាយដោយ​ការបំពេញការ៉េ សមីការរត្រូវតែដំបូងស្ថិតនៅក្នុងទម្រង់ x^{2}+bx=c។
a^{2}+8a+9-9=96-9
ដក 9 ពីជ្រុងទាំងពីរនៃសមីការរ។
a^{2}+8a=96-9
ការដក 9 ពីខ្លួនឯងនៅសល់ 0។
a^{2}+8a=87
ដក 9 ពី 96។
a^{2}+8a+4^{2}=87+4^{2}
ចែក 8 ដែលជាមេគុណនៃតួ x នឹង 2 ដើម្បីបាន 4។ បន្ទាប់មក​បូកការ៉េនៃ 4 ជាមួយ​ជ្រុងទាំងពីរនៃសមីការរ។ ជំហាននេះធ្វើឲ្យជ្រុងខាងឆ្វេងនៃសមីការរក្លាយជាការេប្រាកដមួយ។
a^{2}+8a+16=87+16
ការ៉េ 4។
a^{2}+8a+16=103
បូក 87 ជាមួយ 16។
\left(a+4\right)^{2}=103
ដាក់ជាកត្តា a^{2}+8a+16 ។ ជាទូទៅ នៅពេល x^{2}+bx+c គឺជាការ៉េប្រាកដ វាតែងតែអាចត្រូវបានដាក់ជាកត្តាជា \left(x+\frac{b}{2}\right)^{2}។
\sqrt{\left(a+4\right)^{2}}=\sqrt{103}
យក​ឬសការ៉េនៃជ្រុងទាំងពីរនៃសមីការ។
a+4=\sqrt{103} a+4=-\sqrt{103}
ផ្ទៀងផ្ទាត់។
a=\sqrt{103}-4 a=-\sqrt{103}-4
ដក 4 ពីជ្រុងទាំងពីរនៃសមីការរ។
a^{2}+8a+9=96
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយការប្រើរូបមន្តកាដ្រាទីក៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ រូបមន្តកាដ្រាទីកផ្ដល់នូវចម្លើយពីរ ចម្លើយមួយគឺនៅពេល ± ជាផលបូក និងចម្លើយមួយទៀតនៅពេលវាជាផលដក។
a^{2}+8a+9-96=96-96
ដក 96 ពីជ្រុងទាំងពីរនៃសមីការរ។
a^{2}+8a+9-96=0
ការដក 96 ពីខ្លួនឯងនៅសល់ 0។
a^{2}+8a-87=0
ដក 96 ពី 9។
a=\frac{-8±\sqrt{8^{2}-4\left(-87\right)}}{2}
សមីការរនេះមានទម្រង់ស្ដង់ដារ៖ ax^{2}+bx+c=0។ ជំនួស 1 សម្រាប់ a, 8 សម្រាប់ b និង -87 សម្រាប់ c នៅក្នុងរូបមន្តកាដ្រាទីក, \frac{-b±\sqrt{b^{2}-4ac}}{2a}។
a=\frac{-8±\sqrt{64-4\left(-87\right)}}{2}
ការ៉េ 8។
a=\frac{-8±\sqrt{64+348}}{2}
គុណ -4 ដង -87។
a=\frac{-8±\sqrt{412}}{2}
បូក 64 ជាមួយ 348។
a=\frac{-8±2\sqrt{103}}{2}
យកឬសការ៉េនៃ 412។
a=\frac{2\sqrt{103}-8}{2}
ឥឡូវដោះស្រាយសមីការរ a=\frac{-8±2\sqrt{103}}{2} នៅពេល ± គឺជាសញ្ញាបូក។ បូក -8 ជាមួយ 2\sqrt{103}។
a=\sqrt{103}-4
ចែក -8+2\sqrt{103} នឹង 2។
a=\frac{-2\sqrt{103}-8}{2}
ឥឡូវដោះស្រាយសមីការរ a=\frac{-8±2\sqrt{103}}{2} នៅពេល ± គឺជាសញ្ញាដក។ ដក 2\sqrt{103} ពី -8។
a=-\sqrt{103}-4
ចែក -8-2\sqrt{103} នឹង 2។
a=\sqrt{103}-4 a=-\sqrt{103}-4
សមីការរឥឡូវនេះត្រូវបានដោះស្រាយ។
a^{2}+8a+9=96
សមីការរកាដ្រាទីកដូចសមីការរមួយនេះអាចត្រូវបានដោះស្រាយដោយ​ការបំពេញការ៉េ សមីការរត្រូវតែដំបូងស្ថិតនៅក្នុងទម្រង់ x^{2}+bx=c។
a^{2}+8a+9-9=96-9
ដក 9 ពីជ្រុងទាំងពីរនៃសមីការរ។
a^{2}+8a=96-9
ការដក 9 ពីខ្លួនឯងនៅសល់ 0។
a^{2}+8a=87
ដក 9 ពី 96។
a^{2}+8a+4^{2}=87+4^{2}
ចែក 8 ដែលជាមេគុណនៃតួ x នឹង 2 ដើម្បីបាន 4។ បន្ទាប់មក​បូកការ៉េនៃ 4 ជាមួយ​ជ្រុងទាំងពីរនៃសមីការរ។ ជំហាននេះធ្វើឲ្យជ្រុងខាងឆ្វេងនៃសមីការរក្លាយជាការេប្រាកដមួយ។
a^{2}+8a+16=87+16
ការ៉េ 4។
a^{2}+8a+16=103
បូក 87 ជាមួយ 16។
\left(a+4\right)^{2}=103
ដាក់ជាកត្តា a^{2}+8a+16 ។ ជាទូទៅ នៅពេល x^{2}+bx+c គឺជាការ៉េប្រាកដ វាតែងតែអាចត្រូវបានដាក់ជាកត្តាជា \left(x+\frac{b}{2}\right)^{2}។
\sqrt{\left(a+4\right)^{2}}=\sqrt{103}
យក​ឬសការ៉េនៃជ្រុងទាំងពីរនៃសមីការ។
a+4=\sqrt{103} a+4=-\sqrt{103}
ផ្ទៀងផ្ទាត់។
a=\sqrt{103}-4 a=-\sqrt{103}-4
ដក 4 ពីជ្រុងទាំងពីរនៃសមីការរ។