ដាក់ជាកត្តា
\left(a+1\right)^{2}
វាយតម្លៃ
\left(a+1\right)^{2}
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
p+q=2 pq=1\times 1=1
ដាក់ជាកត្តានូវកន្សោមដោយដាក់ជាក្រុម។ ដំបូង កន្សោមត្រូវតែសរសេរឡើងវិញជា a^{2}+pa+qa+1។ ដើម្បីរក p និង q សូមបង្កើតប្រព័ន្ធដែលត្រូវដោះស្រាយ។
p=1 q=1
ដោយសារ pq ជាចំនួនវិជ្ជមាន p និង q មានសញ្ញាដូចគ្នា។ ដោយសារ p+q ជាចំនួនវិជ្ជមាន p ហើយ q ជាចំនួនវិជ្ជមានទាំងពីរ។ មានតែគូដូច្នេះប៉ុណ្ណោះគឺជាចម្លើយរបស់ប្រព័ន្ធ។
\left(a^{2}+a\right)+\left(a+1\right)
សរសេរ a^{2}+2a+1 ឡើងវិញជា \left(a^{2}+a\right)+\left(a+1\right)។
a\left(a+1\right)+a+1
ដាក់ជាកត្តា a នៅក្នុង a^{2}+a។
\left(a+1\right)\left(a+1\right)
ដាក់ជាកត្តាលក្ខណៈធម្មតា a+1 ដោយប្រើលក្ខណៈបំបែក។
\left(a+1\right)^{2}
សរសេរឡើងវិញជាការ៉េទ្វេរធា។
factor(a^{2}+2a+1)
ត្រីធានេះមានទម្រង់នៃការ៉េ ប្រហែលជាត្រូវបានគុណនឹងកត្តារួម។ ការ៉េត្រីធាអាចត្រូវបានដាក់ជាកត្តាដោយការរកឬសការ៉េនៃតួនាំមុខ និងតួខាងចុង។
\left(a+1\right)^{2}
ការ៉េត្រីធាគឺជាការ៉េនៃទ្វេរធាដែលជាផលបូក ឬផលដកនៃឬសការ៉េនៃតួនាំមុខ ឬតួខាងចុងដែលមានសញ្ញាកំណត់ដោយសញ្ញាតួកណ្ដាលនៃការ៉េត្រីធា។
a^{2}+2a+1=0
ពហុធាកាដ្រាទីកអាចត្រូវបានដាក់ជាកត្តាដោយប្រើការបម្លែង ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ដែល x_{1} និង x_{2} គឺជាចម្លើយនៃសមីការរកាដ្រាទីក ax^{2}+bx+c=0។
a=\frac{-2±\sqrt{2^{2}-4}}{2}
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយការប្រើរូបមន្តកាដ្រាទីក៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ រូបមន្តកាដ្រាទីកផ្ដល់នូវចម្លើយពីរ ចម្លើយមួយគឺនៅពេល ± ជាផលបូក និងចម្លើយមួយទៀតនៅពេលវាជាផលដក។
a=\frac{-2±\sqrt{4-4}}{2}
ការ៉េ 2។
a=\frac{-2±\sqrt{0}}{2}
បូក 4 ជាមួយ -4។
a=\frac{-2±0}{2}
យកឬសការ៉េនៃ 0។
a^{2}+2a+1=\left(a-\left(-1\right)\right)\left(a-\left(-1\right)\right)
ដាក់កន្សោមដើមដាក់ជាកត្តាដោយប្រើ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)។ ជំនួស -1 សម្រាប់ x_{1} និង -1 សម្រាប់ x_{2}។
a^{2}+2a+1=\left(a+1\right)\left(a+1\right)
សម្រួលកន្សោមទាំងអស់នៃទម្រង់ p-\left(-q\right) ទៅ p+q។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}