រំលងទៅមាតិកាមេ
ដាក់ជាកត្តា
Tick mark Image
វាយតម្លៃ
Tick mark Image

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

t\left(2t+3\right)
ដាក់ជាកត្តា t។
2t^{2}+3t=0
ពហុធាកាដ្រាទីកអាចត្រូវបានដាក់ជាកត្តាដោយប្រើការបម្លែង ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ដែល x_{1} និង x_{2} គឺជា​ចម្លើយនៃ​សមីការរកាដ្រាទីក ax^{2}+bx+c=0។
t=\frac{-3±\sqrt{3^{2}}}{2\times 2}
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយការប្រើរូបមន្តកាដ្រាទីក៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ រូបមន្តកាដ្រាទីកផ្ដល់នូវចម្លើយពីរ ចម្លើយមួយគឺនៅពេល ± ជាផលបូក និងចម្លើយមួយទៀតនៅពេលវាជាផលដក។
t=\frac{-3±3}{2\times 2}
យកឬសការ៉េនៃ 3^{2}។
t=\frac{-3±3}{4}
គុណ 2 ដង 2។
t=\frac{0}{4}
ឥឡូវដោះស្រាយសមីការរ t=\frac{-3±3}{4} នៅពេល ± គឺជាសញ្ញាបូក។ បូក -3 ជាមួយ 3។
t=0
ចែក 0 នឹង 4។
t=-\frac{6}{4}
ឥឡូវដោះស្រាយសមីការរ t=\frac{-3±3}{4} នៅពេល ± គឺជាសញ្ញាដក។ ដក 3 ពី -3។
t=-\frac{3}{2}
កាត់បន្ថយប្រភាគ \frac{-6}{4} ទៅតួដែលតូចបំផុតដោយ​ដក និងលុបចេញ 2។
2t^{2}+3t=2t\left(t-\left(-\frac{3}{2}\right)\right)
ដាក់កន្សោមដើមដាក់ជាកត្តា​ដោយប្រើ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)។ ជំនួស 0 សម្រាប់ x_{1} និង -\frac{3}{2} សម្រាប់ x_{2}។
2t^{2}+3t=2t\left(t+\frac{3}{2}\right)
សម្រួលកន្សោមទាំងអស់នៃទម្រង់ p-\left(-q\right) ទៅ p+q។
2t^{2}+3t=2t\times \frac{2t+3}{2}
បូក \frac{3}{2} ជាមួយ t ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មក​បន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
2t^{2}+3t=t\left(2t+3\right)
សម្រួល 2 ដែលជាកត្តារួមធំបំផុតរវាង 2 និង 2។