ដោះស្រាយសម្រាប់ A
\left\{\begin{matrix}A=\frac{KO}{TP^{2}}\text{, }&P\neq 0\text{ and }T\neq 0\\A\in \mathrm{R}\text{, }&\left(O=0\text{ and }P=0\right)\text{ or }\left(K=0\text{ and }P=0\right)\text{ or }\left(K=0\text{ and }T=0\text{ and }P\neq 0\right)\text{ or }\left(O=0\text{ and }T=0\text{ and }P\neq 0\right)\end{matrix}\right.
ដោះស្រាយសម្រាប់ K
\left\{\begin{matrix}K=\frac{ATP^{2}}{O}\text{, }&O\neq 0\\K\in \mathrm{R}\text{, }&\left(T=0\text{ or }A=0\text{ or }P=0\right)\text{ and }O=0\end{matrix}\right.
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
P^{2}TA=OK
គុណ P និង P ដើម្បីបាន P^{2}។
TP^{2}A=KO
សមីការឥឡូវនេះស្ថិតនៅក្នុងទម្រង់ស្ដង់ដារ។
\frac{TP^{2}A}{TP^{2}}=\frac{KO}{TP^{2}}
ចែកជ្រុងទាំងពីនឹង P^{2}T។
A=\frac{KO}{TP^{2}}
ការចែកនឹង P^{2}T មិនធ្វើប្រមាណវិធីគុណនឹង P^{2}T ឡើងវិញ។
P^{2}TA=OK
គុណ P និង P ដើម្បីបាន P^{2}។
OK=P^{2}TA
ប្ដូរផ្នែកទាំងពីរ ដើម្បីឲ្យតួអថេរទាំងអស់ស្ថិតនៅផ្នែកខាងឆ្វេង។
OK=ATP^{2}
សមីការឥឡូវនេះស្ថិតនៅក្នុងទម្រង់ស្ដង់ដារ។
\frac{OK}{O}=\frac{ATP^{2}}{O}
ចែកជ្រុងទាំងពីនឹង O។
K=\frac{ATP^{2}}{O}
ការចែកនឹង O មិនធ្វើប្រមាណវិធីគុណនឹង O ឡើងវិញ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}