រំលងទៅមាតិកាមេ
ដាក់ជាកត្តា
Tick mark Image
វាយតម្លៃ
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

a+b=6 ab=9\times 1=9
ដាក់ជាកត្តានូវកន្សោម​ដោយដាក់ជាក្រុម។ ដំបូង​ កន្សោម​ត្រូវតែសរសេរឡើងវិញជា 9x^{2}+ax+bx+1។ ដើម្បីរក a និង b សូមបង្កើត​ប្រព័ន្ធដែល​ត្រូវដោះស្រាយ។
1,9 3,3
ដោយសារ ab ជាចំនួនវិជ្ជមាន a និង b មានសញ្ញាដូចគ្នា។ ដោយសារ a+b ជាចំនួនវិជ្ជមាន a ហើយ b ជាចំនួនវិជ្ជមានទាំងពីរ។ រាយ​ឈ្មោះគូ​ទាំងអស់ដែល​ផ្ដល់នូវផលគុណ 9។
1+9=10 3+3=6
គណនី​ផល​បូកសម្រាប់គូនីមួយៗ។
a=3 b=3
ចម្លើយគឺជា​គូ ដែលផ្ដល់​នូវផលបូក 6 ។
\left(9x^{2}+3x\right)+\left(3x+1\right)
សរសេរ 9x^{2}+6x+1 ឡើងវិញជា \left(9x^{2}+3x\right)+\left(3x+1\right)។
3x\left(3x+1\right)+3x+1
ដាក់ជាកត្តា 3x នៅក្នុង 9x^{2}+3x។
\left(3x+1\right)\left(3x+1\right)
ដាក់ជាកត្តាលក្ខណៈធម្មតា 3x+1 ដោយប្រើលក្ខណៈបំបែក។
\left(3x+1\right)^{2}
សរសេរឡើងវិញជាការ៉េទ្វេរធា។
factor(9x^{2}+6x+1)
ត្រីធានេះមានទម្រង់នៃការ៉េ ប្រហែលជាត្រូវបានគុណនឹងកត្តារួម។ ការ៉េត្រីធាអាចត្រូវបានដាក់ជាកត្តាដោយការរកឬសការ៉េនៃតួនាំមុខ និងតួខាងចុង។
gcf(9,6,1)=1
រកតួចែករួមធំបំផុតនៃមេគុណ។
\sqrt{9x^{2}}=3x
រកឬសការ៉េនៃតួនាំមុខ 9x^{2}។
\left(3x+1\right)^{2}
ការ៉េត្រីធាគឺជាការ៉េនៃទ្វេរធាដែលជាផលបូក ឬផលដកនៃឬសការ៉េនៃតួនាំមុខ ឬតួខាងចុងដែលមានសញ្ញាកំណត់ដោយសញ្ញាតួកណ្ដាលនៃការ៉េត្រីធា។
9x^{2}+6x+1=0
ពហុធាកាដ្រាទីកអាចត្រូវបានដាក់ជាកត្តាដោយប្រើការបម្លែង ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ដែល x_{1} និង x_{2} គឺជា​ចម្លើយនៃ​សមីការរកាដ្រាទីក ax^{2}+bx+c=0។
x=\frac{-6±\sqrt{6^{2}-4\times 9}}{2\times 9}
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយការប្រើរូបមន្តកាដ្រាទីក៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ រូបមន្តកាដ្រាទីកផ្ដល់នូវចម្លើយពីរ ចម្លើយមួយគឺនៅពេល ± ជាផលបូក និងចម្លើយមួយទៀតនៅពេលវាជាផលដក។
x=\frac{-6±\sqrt{36-4\times 9}}{2\times 9}
ការ៉េ 6។
x=\frac{-6±\sqrt{36-36}}{2\times 9}
គុណ -4 ដង 9។
x=\frac{-6±\sqrt{0}}{2\times 9}
បូក 36 ជាមួយ -36។
x=\frac{-6±0}{2\times 9}
យកឬសការ៉េនៃ 0។
x=\frac{-6±0}{18}
គុណ 2 ដង 9។
9x^{2}+6x+1=9\left(x-\left(-\frac{1}{3}\right)\right)\left(x-\left(-\frac{1}{3}\right)\right)
ដាក់កន្សោមដើមដាក់ជាកត្តា​ដោយប្រើ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)។ ជំនួស -\frac{1}{3} សម្រាប់ x_{1} និង -\frac{1}{3} សម្រាប់ x_{2}។
9x^{2}+6x+1=9\left(x+\frac{1}{3}\right)\left(x+\frac{1}{3}\right)
សម្រួលកន្សោមទាំងអស់នៃទម្រង់ p-\left(-q\right) ទៅ p+q។
9x^{2}+6x+1=9\times \frac{3x+1}{3}\left(x+\frac{1}{3}\right)
បូក \frac{1}{3} ជាមួយ x ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មក​បន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
9x^{2}+6x+1=9\times \frac{3x+1}{3}\times \frac{3x+1}{3}
បូក \frac{1}{3} ជាមួយ x ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មក​បន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
9x^{2}+6x+1=9\times \frac{\left(3x+1\right)\left(3x+1\right)}{3\times 3}
គុណ \frac{3x+1}{3} ដង \frac{3x+1}{3} ដោយការគុណភាគយក​ចំនួនដងនៃភាគយក និងភាគបែងចំនួនដងនៃភាគបែង។ បន្ទាប់មកបន្ថយប្រភាគទៅតួទាបបំផុត បើអាចធ្វើបាន។
9x^{2}+6x+1=9\times \frac{\left(3x+1\right)\left(3x+1\right)}{9}
គុណ 3 ដង 3។
9x^{2}+6x+1=\left(3x+1\right)\left(3x+1\right)
សម្រួល 9 ដែលជាកត្តារួមធំបំផុតរវាង 9 និង 9។